Реферат: Методы обучения математике общая характеристика и классификация
Данная задача – арифметическая. Проанализируем ее. Что надо знать для того, чтобы найти требуемую сумму? – ТК она является прямоугольником, то достаточно знать его ширину и длину. Можем ли мы найти искомые площади?– Наименьшая грань – 6м и 8м, наибольшая грань – 8м и 12 м. Синтез в задаче – ее решение: 6∙8+8∙12=8∙18=144
Ответ: 144 м2 .
Задача. В двух мешках вместе находится 140 кг муки. Если из первого мешка переложить во второй 12,5 % муки, находящейся в первом мешке, то в обоих мешках будет одинаковое количество муки. Сколько килограммов муки в каждом мешке?
При решении задач алгебраическим методом. Составление уравнения – анализ, решение полученной математической модели – синтез.
|
140-х=60 (кг)
Ответ: 80кг; 60кг.
Наиболее распространенный метод – аналитико-синтетический.
Индукция
Переход от частного к общему, от единичных фактов, установленных с помощью наблюдения и опыта, к обобщениям является закономерностью познания. Неотъемлемой логической формой такого перехода является индукция , представляющая собой метод рассуждений от частного к общему, вывод заключения из частных посылок (с латинского: induction – наведение).
Использование этого метода рассуждений для получения новых знаний в процессе обучения называют индуктивным методом обучения.
Индукция имеет три значения:
вид умозаключения : , , 20 и 30 оканчиваются цифрой ноль число, оканчивающиеся нулем, делятся на 10 (истинно);
метод исследования : поиск формулы простого числа: ,,и т.д., – простые числа, однако – число составное;
метод обучения : знакомя учащихся с понятием о высоте треугольника, учитель чертит на доске остроугольный прямоугольный, тупоугольный треугольники и в каждом из них проводит высоту. Из рассмотрения этих чертежей учащиеся приходят к выводу, что если углы прилежащие к основанию треугольника, острые то высота пересекается с основанием, а если один из двух углов, прилежащих к основанию треугольника, тупой, то высота пересекается с продолжением этого основания.
Различают два основных вида индуктивных умозаключений: неполную и полную индукции.
Полной индукцией называется умозаключение, основанное на рассмотрении всех единичных и частных суждений (случаев), относящихся к рассматриваемой ситуации.
Единичные суждения :
окружность может пересекаться с прямой не более чем в двух точках;
эллипс может пересекаться с прямой не более чем в двух точках;
парабола может пересекаться с прямой не более чем в двух точках.
Частные суждения :
Эллипс (в частности, окружность), парабола представляют собой виды конических сечений, образуя множество кривых второго порядка.
На основании этих суждений получаем новое: кривые второго порядка могут пересекаться с прямой не более чем в двух точках (истинное).
Если число случаев конечно и все они рассмотрены, то вывод, сделанный посредством полной индукции можно считать обоснованным.
Например:
от 1 до 10 четыре простых числа;
описать все возможные решения уравнения х2 =а: а<0, a=0, a>0.
Таким образом, заключение, основанное на полной индукции, является в полнее достоверным и она может использоваться как метод строгого научного доказательства (теорема о величине вычисленного угла; «доказать, что запись квадрата числа натурального не может оканчиваться цифрой 7»).