Реферат: Методы оценки температурного состояния

Длина третьего участка:

. (2.5)

Площадь поперечного сечения гильзы на выходе при заданных внутреннем диаметре гильзы и толщине стенки трубы рассчитывается по формуле:

. (2.6)

Площадь поперечного сечения металла в зазоре валок - оправка определяется как:

,(2.7)

где и - текущее значение радиуса валка и радиуса оправки, вычисляемое по следующим тригонометрическим соотношениям:

для сферической части оправки

; (2.8)

для конической части оправки до пережима

; (2.9)

для конической части оправки после пережима

,(2.10)

где - радиус валка в сечении носка оправки; - радиус сферической части оправки; - угол от оси сферы до расчетного сечения сферической части оправки; - угол входного конуса валка (3°...4°); - угол выходного конуса валка (3°30'...6°); - угол конусности оправки; - текущая длина второго участка оправки; - выдвижение оправки за пережим.

На поверхности оправки образуется слой окалины. Толщина окалинообразующего слоя на поверхности оправки .

Физические условия.

При прошивке происходит теплообмен в системе тел: валки - линейки - гильза - слой окалины - оправка. Температура валков и линеек принимается постоянной. Источниками тепла являются нагретая заготовка и внутренние источники (деформационный разогрев, разогрев за счет сил трения). Тепловая энергия в процессе прошивки поступают на разогрев технологического инструмента. В период между прошивками оправка охлаждается на воздухе или в проточной воде.

Прошивная оправка является сплошным однородным изотропным телом. Ее теплопроводность является скалярной величиной. В качестве материала оправки выбирается сталь марки 30Х2МФА и 38ХНЗМФА. Физическими параметрами оправки являются плотность , удельная массовая теплоемкость оправки , коэффициент теплопроводности материала оправки . Внутренние источники тепла в оправке отсутствуют.

Время нагрева оправки при прошивке определяется по скорости движения металла и заданной длине гильзы :

. (2.11)

Условия на границе металл - оправка.

Теплофизическими свойствами металла являются плотность , удельная массовая теплоемкость металла , коэффициент теплопроводности металла . При деформации металла происходит выделение теплоты.

Для определения кондуктивного и лучистого тепловых потоков на границе контакта металл - оправка необходимо предварительно рассчитать температуру металла в зазоре между валками, линейками и прошивной оправкой. Эта температура деформируемого металла в процессе прошивки зависит, с одной стороны, от тепловыделений за счет работы сил трения и при формоизменении металла, а с другой стороны, от теплоотдачи к оправке, валкам, линейкам и окружающей среде. В общем случае среднюю температуру металла за время одной прошивки можно рассчитать по формуле:

,(2.12)

где - средняя температура металла на входе в прошивной стан, рассчитывается по известному температурному полю заготовки перед прошивкой:

,(2.13)

где - объем заготовки; - время охлаждения заготовки на воздухе перед станом; - среднее повышение температуры металла при прошивке, которое определяется из уравнения теплового баланса очага деформации:

,(2.14)

где: - удельная объемная теплоемкость металла; - объем очага деформации; - общее количество энергии, затраченной на процесс деформирования; - коэффициент выхода теплоты; - теплота, поступающая в металл за счет работы сил трения; - тепловые потери очага деформации в окружающую среду и технологический инструмент; - поправочный коэффициент, полученный экспериментально.

К-во Просмотров: 300
Бесплатно скачать Реферат: Методы оценки температурного состояния