Реферат: Методы оценки температурного состояния
Длина третьего участка:
. (2.5)
Площадь поперечного сечения гильзы на выходе при заданных внутреннем диаметре гильзы и толщине стенки трубы рассчитывается по формуле:
. (2.6)
Площадь поперечного сечения металла в зазоре валок - оправка определяется как:
,(2.7)
где и
- текущее значение радиуса валка и радиуса оправки, вычисляемое по следующим тригонометрическим соотношениям:
для сферической части оправки
; (2.8)
для конической части оправки до пережима
; (2.9)
для конической части оправки после пережима
,(2.10)
где - радиус валка в сечении носка оправки;
- радиус сферической части оправки;
- угол от оси сферы до расчетного сечения сферической части оправки;
- угол входного конуса валка (3°...4°);
- угол выходного конуса валка (3°30'...6°);
- угол конусности оправки;
- текущая длина второго участка оправки;
- выдвижение оправки за пережим.
На поверхности оправки образуется слой окалины. Толщина окалинообразующего слоя на поверхности оправки .
Физические условия.
При прошивке происходит теплообмен в системе тел: валки - линейки - гильза - слой окалины - оправка. Температура валков и линеек принимается постоянной. Источниками тепла являются нагретая заготовка и внутренние источники (деформационный разогрев, разогрев за счет сил трения). Тепловая энергия в процессе прошивки поступают на разогрев технологического инструмента. В период между прошивками оправка охлаждается на воздухе или в проточной воде.
Прошивная оправка является сплошным однородным изотропным телом. Ее теплопроводность является скалярной величиной. В качестве материала оправки выбирается сталь марки 30Х2МФА и 38ХНЗМФА. Физическими параметрами оправки являются плотность , удельная массовая теплоемкость оправки
, коэффициент теплопроводности материала оправки
. Внутренние источники тепла в оправке отсутствуют.
Время нагрева оправки при прошивке определяется по скорости движения металла и заданной длине гильзы
:
. (2.11)
Условия на границе металл - оправка.
Теплофизическими свойствами металла являются плотность , удельная массовая теплоемкость металла
, коэффициент теплопроводности металла
. При деформации металла происходит выделение теплоты.
Для определения кондуктивного и лучистого тепловых потоков на границе контакта металл - оправка необходимо предварительно рассчитать температуру металла в зазоре между валками, линейками и прошивной оправкой. Эта температура деформируемого металла в процессе прошивки зависит, с одной стороны, от тепловыделений за счет работы сил трения и при формоизменении металла, а с другой стороны, от теплоотдачи к оправке, валкам, линейкам и окружающей среде. В общем случае среднюю температуру металла за время одной прошивки можно рассчитать по формуле:
,(2.12)
где - средняя температура металла на входе в прошивной стан, рассчитывается по известному температурному полю заготовки перед прошивкой:
,(2.13)
где - объем заготовки;
- время охлаждения заготовки на воздухе перед станом;
- среднее повышение температуры металла при прошивке, которое определяется из уравнения теплового баланса очага деформации:
,(2.14)
где: - удельная объемная теплоемкость металла;
- объем очага деформации;
- общее количество энергии, затраченной на процесс деформирования;
- коэффициент выхода теплоты;
- теплота, поступающая в металл за счет работы сил трения;
- тепловые потери очага деформации в окружающую среду и технологический инструмент;
- поправочный коэффициент, полученный экспериментально.