Реферат: Минимизация функций алгебры логики

Если количество неопределенных наборов равно m то путем различных доопределений можно получить различных функций.

Пример: доопределить функцию

Где символ * означает "может быть".

Доопределим *=0

1)

Доопределим *=1

2)

Если доопределять *=0 или *=1 то получим минимальный вариант:

3)

Пример показывает, что доопределение функции существенно влияет на конечный результат минимизации. При доопределении можно руководствоваться правилом: МДНФ не полностью определенных функций получается как дизъюнкция наиболее коротких по числу букв импликант функции на всех наборах и функциях, которые в совокупности покрывают все импликативные СНФ, и на всех наборах, где функция не определена.

Пример: найти минимальную форму для

Составим таблицу истинности:

0 0 0 0 1
0 0 0 1 *
0 0 1 0 *
0 0 1 1 0
0 1 0 0 *
0 1 0 1 0
0 1 1 0 1
0 1 1 1 *
1 0 0 0 *
1 0 0 1 1
1 0 1 0 0
1 0 1 1 *
1 1 0 0 0
1 1 0 1 *
1 1 1 0 1
1 1 1 1 *

1)доопрделим *=1 и получим минимальный вид функции

Доопрделим *=0

Оптимальное доопрделение функций соответствующее минимальному покрытию может быть найдено по методу Квайна.

V
V V
V V
V

В результате получится минимальный вид функции вида: ее таблица единичных значений тогда будет:

Временные булевы функции. (1.7)

Определение : Временная булева функция – логическая функция вида , принимающая значение единицы при , где s – дискретное целочисленное значение, называемое автоматическим временем.

Утверждение: число различных временных булевых функций равно .

Доказательство: если функция времени принимает n значений и на каждом интервале времени t соответствует единичных наборов, то всего получится наборов, значит число временных булевых функций равно .

Любая временная булева функция может быть представлена в виде

Где - конъюнктивный или дизъюнктивный терм, а равно 0 или 1 в зависимости от времени t. Форма представления временных булевых функций позволяет применить все метды минимизации.

Пример:

0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 0
0 0 1 0
0 1 1 1
1 0 1 1
1 1 1 0
0 0 2 0
0 1 2 0
1 0 2 1
1 1 2 1

К-во Просмотров: 460
Бесплатно скачать Реферат: Минимизация функций алгебры логики