Реферат: Модели систем массового обслуживания. Классификация систем массового обслуживания

и решение матричного уравнения сводится к решению системы трёх уравнений:

Коэффициенты первого уравнения в этой системе дополняют до единицы сумму коэффициентов второго и третьего уравнений; это свидетельствует о линейной зависимости между ними. Поэтому для решения системы уравнений нужно ввести дополнительное нормирующее условие. В данном примере: .

Решая систему полученных уравнений, имеем:

Уравнение для вероятности достижения состояния в переходном режиме решить значительно труднее. Некоторого упрощения можно достигнуть, используя z – преобразование. Применим его к уравнению для переходных вероятностей

.

Обозначая соответствующие преобразования, получим:

Все полученные здесь математические результаты относились к однородным Марковским процессам, где вероятности переходов не зависят от времени. В более общем случае такая зависимость имеет место.

Рассмотрим вероятности перехода системы из состояния i на m-том шаге в состояние j на n-том шаге для n > m.

Можно показать, что эти вероятности связаны между собой, так называемым уравнениями Чепмена-Колмогорова.(Chapman - Kolmogorov)

.

Для однородных цепей Маркова эти уравнения упрощаются так как

.

И сводятся к анализируемым выше.

Непрерывные цепи Маркова.

Случайный процесс X(t) с дискретным множеством значений образует непрерывную цепь Маркова, если

.

Будущие состояния зависят от прошлого только через текущее состояние. Для непрерывный цепей Маркова основным также является уравнение Чепмена –Колмогорова, для однородной цепи имеющее вид: .

Здесь матрица H (t)= [ pij (t)] - матрица вероятностей перехода из состояния i в состояние j в момент времени t , а матрица Q называется матрицей интенсивностей переходов. Ее элементы имеют следующий смысл: если в момент времени t система находилась в состоянии Ei , то вероятность перехода в течение промежутка времени (t,t+Δt) в произвольное состояние Ej задается величиной qij (t)Δt + o(Δt), а вероятность ухода из состояния Ei величиной -qii Δt + o(Δt).

Таким образом, интенсивности переходов можно вычислять как соответствующие пределы при стремлении к нулю длительности временного интервала.

Наиболее важным для дальнейшего использования является класс непрерывных цепей Маркова называемых «процессами гибели - размножения» ( Birth – deathprocess). Для таких систем из состояния k возможны переходы только в состояния k, k-1 и k+1 в следующие моменты времени:

· в момент t объем популяции был равен k и в течение времени (t,t+Δt) не произошло изменения состояния

· в момент t объем популяции был равен k-1 и в течение времени (t,t+Δt) родился один член популяции

· в момент времени t объем популяции был равен k+1 и в течение времени (t,t+Δt) погиб один член популяции

Рис. 1. Возможные переходы в состояние Ек.

Будем искать вероятность того, что в момент времени t объем популяции равен k , обозначив его Pk (t). Можно записать соотношения для вероятности достижения со­стояния k в момент времени t+Δt:

.

К-во Просмотров: 296
Бесплатно скачать Реферат: Модели систем массового обслуживания. Классификация систем массового обслуживания