Реферат: Модели систем массового обслуживания. Классификация систем массового обслуживания

Число требований, находящихся в системе в момент t будет равно:

.

Площадь между двумя рассматриваемыми кривыми от 0 до t - дает общее время, проведенное всеми заявками в системе за время t.

Обозначим эту накопленную величину γ(t) . Если интенсивность входного потока равна λ, а средняя интенсивность за время t: ,то время, проведенное одной заявкой в системе, усредненное по всем заявкам будет равно:

.

Наконец, определим среднее число требований в системе в промежутке (0,t): .

Из последних трех уравнений следует, что: , (где ).

Если в СМО существует стационарный режим, то при t→ ∞ , будут иметь место соотношения:

Последнее соотношение означает, что среднее число заявок в системе равно произведению интенсивности поступления требований в систему на среднее время пребывания в системе. При этом не накладывается никаких ограничений на распределения входного потока и времени обслуживания. Впервые доказательство этого факта дал Дж.Литтл и это соотношение носит название формула Литтла.

Интересно, что в качестве СМО можно рассмотреть только очередь из заявок в буфере. Тогда формула Литтла приобретает иной смысл - средняя длина очереди равна произведению интенсивности входного потока заявок на среднее время ожидания в очереди: .

Если наоборот рассматривать СМО только как серверы, то формула Литтла дает:

,

где – среднее число заявок в серверах, а – среднее время обработки в сервере.

В любом случае: .

Одним из основных параметров, которые используются при описании СМО, является коэффициент использования ( utilization factor ) . Это фундаментальный параметр, так как он определяется как отношение интенсивности входного потока к пропускной способности системы. Поскольку пропускная способность СМО содержащей m серверов может быть определена как: , то коэффициент использования может быть определен как:

.

Нетрудно видеть, что коэффициент использования равен в точности интенсивности нагрузки, если СМО с одним сервером и в m раз меньше для систем с m серверами. Величина коэффициента использования равна среднему значению от доли занятых серверов и .

Если в СМО типа G/G/1 существует стационарный режим и можно определить вероятность того, что в некоторый случайный момент сервер будет свободный, то

.


ЛИТЕРАТУРА

1. Л.Н. Волков, М.С. Немировский, Ю.С. Шинаков. Системы цифровой радиосвязи: базовые методы и характеристики. Учебное пособие.-М.: Эко-трендз, 2005.

2. М.В. Гаранин, В.И. Журавлев, С.В. Кунегин. Системы и сети передачи информации. - М.: Радио и связь, 2001.

3. Передача дискретных сообщений./Под ред. В.П. Шувалова. – М.: Радио и связь, 1990.

4. Основы передачи дискретных сообщений./Под ред. В.М. Пушкина. – М.: Радио и связь, 1992.

5. Н.В. Захарченко, П.Я. Нудельман, В.Г. Кононович. Основы передачи дискретных сообщений. –М.: Радио и связь, 1990.

К-во Просмотров: 295
Бесплатно скачать Реферат: Модели систем массового обслуживания. Классификация систем массового обслуживания