Реферат: Модели систем массового обслуживания. Классификация систем массового обслуживания
Выразим вероятности переходов за интервал Δt через интенсивности
Вер(+1)=λk Δt+o(Δt) ; Вер(-1)=μk Δt+o(Δt).
Вероятность нуля рождений 1- λk Δt+o(Δt) , а нуля гибелей 1- μk Δt+o(Δt).
Таким образом, вероятность того, что состояние k сохранится неизменным, будет равно произведению [1- λk Δt+o(Δt)][ 1- μk Δt+o(Δt)].
Тогда уравнения Чепмена-Колмогорова приобретают вид
Раскрывая скобки и проводя деление на Δt, получим:
В пределе получается система дифференциально-разностных уравнений, решение которой будут играть важную роль для практических задач.
В соответствие этой системе уравнений можно поставить наглядную диаграмму интенсивностей переходов, которая аналогична диаграмме переходов для дискретных цепей Маркова (Рис. 2)
Рис. 2 Диаграмма интенсивностей переходов для процесса размножения и гибели.
Овалам здесь соответствуют дискретные состояния, а стрелки определяют интенсивности потоков вероятности (а не вероятности !) переходов от одного состояния к другому.
Имеет место своеобразный «закон сохранения »:
Разность между суммой интенсивностей, с которой система попадает в состояние k и суммой интенсивностей, с которой система покидает это состояние должна равняться интенсивности изменения потока в это состояние (производной по времени).
Применение закона сохранения позволяет получать уравнения для любой подсистемы Марковской цепи типа процесса «гибели-размножения». Особенно эффективным оказывается построение решений в стационарном, установившемся режиме, когда можно полагать что вероятности в произвольный, достаточно отдаленный момент времени, остаются постоянными.
Приравнивая производную по времени нулю, получаем систему разностных уравнений
Полагая, что интенсивности λ-1 =λ-2 = λ-3 =…0; μ0 = μ-1 = μ-2 = μ-3 =…=0, второе уравнение выписывать отдельно далее не потребуется. Итак, стационарный режим в цепи Маркова будет описываться системой разностных уравнений и условием нормировки для вероятностей
Нетрудно видеть, что эти уравнения легко выводятся из закона сохранения интенсивностей вероятностей. В стационарном режиме разность потоков равна нулю и полученные выше уравнения приобретают смысл уравнений равновесия или баланса, как их и называют.
.
Интенсивность потока вероятностей в состояние k равна интенсивности потока из этого состояния.
Решать уравнение баланса можно, сначала определив при k =0 значение
.
Затем, построив систему уравнений для k =1, можно получить .
Далее получаем