Реферат: Некоторые главы мат. анализа
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
2-ая гармоника
3-я гармоника
4-ая гармоника
5-ая гармоника
А теперь рассмотрим сумму этих гармоник F(x):
Комплексная форма ряда по косинусам
Для рассматриваемого ряда получаем коэффициенты (см. гл.1)
,
но при не существует, поэтому рассмотрим случай когда n =+2 :
(т.к. см. разложение выше)
и случай когда n =-2:
( т.к. )
И вообще комплексная форма:
или
или
Разложение нечетной функции в ряд
Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3
Рис.3
поэтому разложение по синусам имеет вид:
Из данного разложения видно, что при n =2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.