Реферат: Некоторые главы мат. анализа
Ввиду важности операций сложения и умножения над событиями дадим их определение:
Суммой двух событий А и В называется событие С, состоящее в выполнении события А или события В , или обоих событий вместе.
Суммой нескольких событий называется событие, состоящее в выполнении хотя бы одного из этих событий.
Произведением двух событий А и В называется событие D , состоящее в совместном выполнении события А и события В .
Произведением нескольких событий называется событие, состоящее в совместном выполнении всех этих событий.
А к с и о м ы т е о р и и в е р о я т н о с т е й :
1. Вероятность любого события находится в пределах:
.
2. Если А и В несовместные события , то
3. Если имеется счетное множество несовместных событий А1 , А2 , ... Аn , ... при , то
Следствие: сумма вероятностей полной группы несовместных событий равна единице , т.е. если
; при
то
.
Сумма вероятностей противоположных событий ровна единице :
Правило умножения вероятностей: вероятность произведения (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого
.
Для независимых событий правило умножения принимает вид:
, или
Основываясь на теорию выведем некоторые формулы для решения поставленной задачи.
Схема состоит из нескольких n блоков (рис. 2.1), каждый из которых (независимо от других) может выйти из строя. Надежность каждого блока равна p . Безотказная работа всех без исключения блоков необходима для безотказной работы в целом. Найти вероятность безотказной работы всей схемы.
Рис. 2.1
Событие A ={безотказная работа прибора} есть произведение n независимых событий А 1 , А 2 , ... Аn , где Ai ={безотказная работа i -го блока}. По правилу умножения для независимых событий имеем
.
Схема состоит из 2 блоков (рис. 2.2), каждый из которых (независимо от друг от друга) может выйти из строя. Надежность каждого блока равна p . Найти вероятность безотказной работы всей системы.
Рис. 2.2
От события В ={система будет работать} перейдем к противоположному:={система не будет работать}. Для того чтобы система не работала, нужно, чтобы отказали оба блока. Событие есть произведение двух событий:
={блок 1 отказал}x{блок 2 отказал}.
По правилу умножения для независимых событий:
3 Практическая часть
Воспользовавшись выше изложенными формулами рассчитаем надежность основной схемы (рис. 1а), она составит :
, а также резервной схемы (рис. 1б) :
Рассмотрим первый способ подключения (смотри рис. 3.1), когда подключаем по N элементов до тех пор, пока
Рис. 3.1
Тогда формула вероятности для схемы на рис. 2 будет выглядеть так :
, где
,
,
,
,
.
Увеличивая N дополнительных элементов пошагово добиваемся значения :
Шаг первый, при N =1
< 0.95
Шаг второй, при N =2
< 0.95