Реферат: Некоторые главы мат. анализа

,

и при n =2:

Учитывая данные коэффициенты имеем разложения в виде

и вообще

Найдем первые пять гармоник для данного разложения:

1-ая гармоника

2-ая гармоника

3-ая гармоника

4-ая гармоника

5-ая гармоника

И просуммировав выше перечисленные гармоники получим график функции F (x )

Вывод:

На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.

Комплексная форма ряда по синусам

Основываясь на теорию (см. гл.1) для ряда получаем:

, (т.к. )

тогда комплексный ряд имеет вид:

ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ

Проверка условий представимости

Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до как равную нулю(рис.4).

Рис.4

а) f(x)-определенна на R;

б) f(x) возрастает на , f(x) убывает на - кусочнo-монотонна.

f(x) = const на и .

< .

Интеграл Фурье

В соответствии с теорией (см. гл. 1) найдем a (u ) и b (u ):

К-во Просмотров: 653
Бесплатно скачать Реферат: Некоторые главы мат. анализа