Реферат: Обобщенный принцип наименьшего действия

Определенная выше d -функция имеет наглядное представление в виде луча - положительной полуоси ординат. Имея бесконечную высоту и нулевую ширину, d -функция ограничивает единичную площадь (неопределенность типа) и обладает двойной направленностью.

Следует отметить, что в приведенном определении d -функция не рассматривается как "равная нулю при всех и обращающаяся в точке x=0 в бесконечность" [8]. Теперь d -функция рассматривается как луч - линейное множество, имеющее мощность континуума.

Поскольку уточненное определение d -функции не затрагивает ее определения как функционала на пространстве D, все свойства d -функции, рассматриваемой как сингулярная обобщенная функция, сохраняются.

Производная d -функции имеет наглядное представление в виде оси ординат, обладает двойной направленностью в каждой из полуплоскостей y<0 и y>0 и пересекает ось абсцисс (все это в одной точке x=0).

Далее все производные понимаются в обобщенном смысле [6-9], т.е. в виде свертки с производными сингулярной d -функции.

Теория обобщенных функций и разработанная техника вычислений их производных [6-9] позволяют распространить необходимые условия экстремума на континуально многозначные (так называемые разрывные) функции многих действительных переменных.

2. Вариационные задачи с разрывным интегрантом

Многие прикладные оптимизационные задачи сводятся к поиску экстремумов интегральных функционалов с разрывным интегрантом. Здесь "разрывной" понимается так: не обязательно разрывной. Обычно, в том числе и в монографиях [3, 5], оптимизационные задачи рассматриваются для функционалов, зависящих от операторов дифференцирования. В работах [10, 11] рассматриваются функционалы, зависящие от интегральных операторов, что существенно расширяет круг решаемых задач.

Будем решать вариационную задачу для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов

(2.1)

где h(t) - экстремаль, относительно которой предполагаем, что.

Функционал качества I может зависеть от нескольких операторов

(2.2)

где F[T ]- интегрант, определяющий связь (композицию) операторов F i в функционале I. Интегрант F[T ] может быть непрерывным, гладким, негладким и даже континуально многозначным или разрывным.

Оптимизации методами негладкого анализа посвящена монография Френка Кларка [3], но методику Кларка применить к функционалам, зависящим от интегральных операторов, нельзя, как нельзя ее применять и для функционалов с континуально многозначным или разрывным интегрантом. Кроме того, экстремали у Кларка предполагаются абсолютно непрерывными. Все это несколько сужает область применения негладкой оптимизации Кларка - теории, впитавшей в себя достижения его предшественников, на кoторых он ссылается в своей монографии. Поскольку оптимизируемый функционал зависит от интегральных операторов, метод, использованный в монографии [5], неприменим тоже. В то же время для решения сформулированной задачи достаточно методов вариационного исчисления, теории обобщенных функций и теоремы Фубини [8], поэтому будем поступать так.

Негладкий, континуально многозначный или разрывной интегрант можно представить с помощью функции включения H(x) (1.2) или ее производных, т.е. d -функции (1.5) и ее производных, используя их фильтрующие свойства. При варьировании функционала I все производные будем понимать в обобщенном смысле

.

Заметим, что этот интеграл теперь имеет математический и физический смыл, а не является "просто символом", как при классическом определении d -функции.

По общему правилу [9-12] введем однопараметрическое семейство кривых , где d h(t)-произвольная функция из Lp [a,b], a - малый параметр. Подставляя в операторы (2.1), а операторы (2.1) в функционал (2.2) и дифференцируя I по a , получим вариацию функционала d I и приравняем ее нулю:

(2.3)

Теперь, чтобы получить необходимое условие экстремума, надо исключить произвольную функцию из вариации функционала d I. В классическом вариационном исчислении это делается с помощью интегрирования по частям, которое в данном случае неприменимо. Полагая, что к вариации d I применима теорема Фубини [8], одним из условий применимости которой может быть суммируемость произведений

изменим в формуле (2.3) порядок интегрирования [10, 11]

(2.4)

Используя основную лемму вариационного исчисления в формулировке Л.Янга [7], получим аналог уравнения Эйлера для функционалов с континуально многозначным или разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на экстремаль,

(2.5)

Следствие. Если воспользоваться фильтрующим свойством d -функции и ее производных, и обозначить ядра операторов (2.1) через Ki (x,t)=d (i) (x-t), то уравнение (2.5) примет вид уравнения Эйлера

(2.6)

простейшей вариационной задачи [12], но для функционалов с континуально многозначным или разрывным интегрантом

(2.7)

К-во Просмотров: 460
Бесплатно скачать Реферат: Обобщенный принцип наименьшего действия