Реферат: Обобщенный принцип наименьшего действия
(П.9)
В полосе a <x<b и интегральная линия имеет вид отрезков прямой, соединяющей концы дуг и с концами дуги. При разных значениях параметра g может быть разная ориентировка этих отрезков. В частности, они могут быть параллельны оси Оy ()или наклонены. Длина отрезка определяется выражением
или
Заметим, что при a =b и лишь при g =1, т.е. требования "стыковки" или даже "сопряжения" дуг и, наложенные в [3] при, не вытекают из условия задачи, несмотря на неразрывность веревки.
Окончательно получим
или (П.10)
При a = b получаем
При a = b и a = 1 получается длина дуги в классической задаче [12] Дидоны
Или
(П.11)
3. Вариационная задача поиска оптимального оператора
Кроме приведенной в разделе 2 постановки вариационной задачи, сформулируем задачу поиска ядра оптимального оператора F i , действующего на заданные функции Si , и доставляющего экстремум функционалу с разрывным интегрантом F. Такие задачи могут, например встречаться при нахождении распределения плотности заряда в частице.
Пусть существует функционал I с разрывным интегрантом F
(3.1)
В случае конечных пределов интегрирования в (3.1) функционал I всегда можно выразить через интеграл с бесконечными пределами с помощью функции (1.2) включения H(x). В формуле (3.1) символами F i (x) обозначены линейные интегральные операторы
(3.2)
с искомым ядром K(x,t), действующим на заданные функции, .
Частные решение
Установим интересное свойство множества экстремалей. Для этого представим ядро в виде произведения
(3.3)
где, - выбранная из некоторого множества произвольная функция, на которую умножаются входные процессы Si (t);, - разностное ядро, которое требуется найти из условия экстремума функционала I. Подставив (3.3) в (3.2), получим
(3.4)
Используем свойство свертки и приведем оператор (3.4) к виду
(3.5)
Частная оптимизационная задача для функционала (3.1), зависящего от линейного интегрального оператора с ядром (3.3), свелась к задаче для функционала (3.1), зависящего от интегральных операторов (3.5) с разностными ядрами Ki (x,t)=Si (x-t)r (x-t). Решение этой задачи получено в разделе 2. Частным необходимым условием экстремума функционала I на основе раздела 2 является уравнение