Реферат: Обучаемая система поддержки коллективного решения группы независимых экспертов
Предложено решающее правило, позволяющее оценивать состояние объекта в условиях противоречивой информации, полученной от группы независимых экспертов (алгоритмов). Для использования правила достаточно иметь информацию об априорных вероятностях классов и условных вероятностях ошибок экспертов. Описана архитектура системы, в которой наряду с формированием коллективного решения обеспечивается уточнение вероятностных характеристик, фигурирующих в решающем правиле.
Введение.
В различных областях приложения (техника, экономика, медицина и т.п.) профессиональная деятельность человека связана с принятием решений, которые сводятся к выбору оптимального варианта из множества альтернатив [1,2]. Для повышения эффективности принимаемых решений часто используется информация, полученная от группы экспертов [3-5]. В этом случае возникает необходимость формирования коллективного решения на основе “интеграции” частных решений членов группы. Типичным примером подобного коллектива является медицинский консилиум, принимающий окончательное решение на основании учета частных решений отдельных специалистов [6]. Идея коллективного решения получила также известность не только для группы людей, но и для совокупности формальных алгоритмов [7-19].
Известны различные подходы к интеграции частных решений. В одних случаях предлагается использовать метод голосования (majority vote method) [9,10] или ранжирования (label ranking method) [11, 12]. В других – использовать схемы, основанные на усреднении или линейной комбинации апостериорных вероятностей, которые оцениваются отдельными классификаторами [13,14], либо использовать алгоритмы нечетких правил (fuzzy rules) [15]. Развиваются также подходы, основанные на выделении в пространстве наблюдений локальных областей, в каждой из которых только один из частных классификаторов “компетентен” принимать решение [16,17].
Все эти работы имеют несомненный теоретический интерес и позволяют обосновать выбор той или иной схемы интеграции, если частные решения принимаются на основе формальных правил. В то же время довольно часто на практике эксперты принимают свои решения неформально, полагаясь на свой предшествующий опыт и интуицию.
Разумеется, в этих практически важных случаях также требуется обоснованный подход к интеграции частных решений экспертов. Например, какое окончательное решение должно быть принято, если в результате независимого обследования часть специалистов (экспертов) признала пациента здоровым, а другая часть – больным?
Можно привести и другие не менее актуальные примеры необходимости принятия коллективных решений в условиях ограниченной априорной информации о том, каким образом эксперты принимают свои частные решения.
В настоящей статье развивается один из возможных подходов к решению таких задач, предложенный в [18].
Постановка задачи.
Пусть некоторый объект Z может находиться в одном из М возможных состояний (классов) V1 ,...,VM с известными априорными вероятностями P(V1), ..., P(VM), . Ясно, что если не располагать какой либо дополнительной информацией, то состояние Z всегда следует относить к классу, имеющему наибольшую априорную вероятность. В этом случае величина
P0 =1- max{P(V1),...,P(VM)}, (1)
определяет минимальную вероятность ошибочной классификации.
Предположим теперь, что имеется N экспертов (алгоритмов) A1,…, AN, которые независимо один от другого принимают решения δj о состоянии Z в виде индикаторных функций
δi = k, если Ai решает в пользу Vk, i =1,…,N, k = 1,…, M. (2)
Будем характеризовать “квалификации” экспертов условными вероятностями ошибочных решений P(A1/Vk),...,P(AN/Vk), (k=1,…,M), которые считаются известными для всех N экспертов на основании предыдущего опыта. При этом, естественно допустить, что
P(Ai/Vk) < P0 для всех i = 1,…, N, k=1,…, M (3)
Ставится задача на основе имеющейся априорной информации по частным решениям независимых экспертов сформировать коллективное решение D =D(δ1, …, δN) о принадлежности Z к одному из M возможных классов (рис. 1).
Модель коллективного решения. Легко видно, что в общем случае число возможных комбинаций частных решений равно , причем только в M случаях эти решения будут согласованными (когда все эксперты принимают решения в пользу одного класса), а в остальных случаях решения противоречивы.
Пусть в результате обследования объекта получена некоторая комбинация S частных решений δ1, …, δN в форме (2). Обозначим Im - множества номеров экспертов, принявших решение в пользу m-го класса (m = 1,…,M). Очевидно, что Ii Ij = для любых i, j = 1,...,M и I1 ... IM ={1,...,N}.
Для минимизации средней вероятности ошибки коллективного решения D =D(δ1, …, δN) на множестве возможных комбинаций частных решений будем для каждой фиксированной комбинации принимать окончательное решение в пользу того из классов, который имеет наибольшую апостериорную вероятность:
(4)
где
.
По определению условная вероятность P(S / Vm) есть ни что иное как вероятность того, что в ситуации, когда имеет место класс Vm , эксперты, номера которых принадлежат множеству Im, приняли правильные решения, а остальные ошиблись. Поскольку мы предполагаем, что решения экспертов независимы, то по формуле произведения вероятностей
. (5)
На основании условия (4) с учетом (5) заключаем, что в ситуации окончательное (коллективное) решение следует принимать согласно правилу
. (6)
Для иллюстрации принятия коллективного решения по правилу (6) рассмотрим модельный пример.
Модельный пример.
Пусть некоторый объект может находиться в одном из трех классов, образующих полную группу случайных событий с априорными вероятностями P(V1) = 0.7, P(V2)=0.08 и P(V3) = 0.22. Состояние объекта оценивается 5 независимыми экспертами. Вероятности ошибок экспертов и возможная комбинация принятых ими частных решений представлены в таблице 1.
Таблица 1.
Эксперт | Вероятности ошибок |
--> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 162
Бесплатно скачать Реферат: Обучаемая система поддержки коллективного решения группы независимых экспертов
|