Реферат: Обучаемая система поддержки коллективного решения группы независимых экспертов
в первом из которых фигурирует оценка частоты появления k-го класса, вычисленная по G-1 наблюдениям, то после очевидных преобразований получим
. (12)
Для оценки вероятностей ошибок экспертов рассмотрим последовательность yk[1], yk[2], … , yk[Gk] указаний учителя, которые удовлетворяют условию yk[n] = k. Легко видно, что величина Eki , фигурирующая в правой части (11), может быть записана в виде суммы
,
где - штрафная функция, выраженная в форме
Тогда, оценка вероятности ошибки i-го эксперта при появлении k-го класса также может быть найдена по рекуррентной формуле
. (13)
Из выражений (12),(13) видно, что при неограниченном росте числа наблюдений величина поправки стремится к нулю, что, естественно, согласуется с предельной теоремой Бернулли [20] о сходимости по вероятности частоты случайного события к его вероятности.
На основе предложенного подхода легко может быть реализована система поддержки принятия коллективных решений, архитектура которой показана на рис. 2.
Блок формирования коллективного решения реализует решающее правило (6) на основании вводимых в систему частных решений 1,…, N группы независимых экспертов A1,…, AN . При этом в правиле (6) используются текущие значения оценок вероятностных характеристик P(Vk) и P(Ai/Vk), (i=1,…,N, k=1,…,M), которые хранятся в базе данных (БД) системы. В БД фиксируются также соответствующие классам V1,…,VM объемы наблюдений G1,…,GM в выборке G = G1 + … + GM, по которой были оценены указанные вероятностные характеристики.
Если после принятия коллективного решения по правилу (6) появляется возможность проверить истинное состояние объекта исследования, то такая дополнительная информация вводится в систему в виде указания “учителя” y[n] и используется для коррекции текущих значений оценок P(Vk) и P(Ai/Vk), (i=1,…,N, k=1,…,M) с помощью рекуррентных формул (12) и (13).
Такая архитектура системы, совмещающая коллективное решающее правило с возможностью его периодической коррекции, может быть рекомендован в различных областях приложения. Покажем это на примере задачи медицинской диагностики.
Известно, что для диагностики заболеваний сердечно-сосудистой системы в кардиологической практике используется электрокардиография, эхокардиография, реография и многие другие неинвазивные (косвенные) методы обследования. При этом хорошо известно, что достоверность таких методов существенно ниже, чем прямого метода – коронарографии. Однако совершенно очевидно, что метод коронарографии не может быть рекомендован для массовых обследований пациента, поскольку он является достаточно дорогим, а самое главное - небезопасным для пациента.
В то же время, на основе предлагаемого подхода можно объединить различные неинвазивные методы диагностики, используя коллективное решающее правило (6), и тем самым повысить эффективность принимаемых решений. Если же по медицинским показаниям некоторым из обследованных пациентов все же будет проводиться коронарография, то ее результаты непременно следует использовать в качестве указаний “учителя”. Тем самым будет обеспечиваться постоянное повышение достоверности диагностики в процессе эксплуатации системы.
Заключение.
Согласно правилу (6) для принятия обоснованного коллективного решения о текущем состоянии объекта исследования достаточно располагать лишь информацией об априорных вероятностях P(Vk) классов и условных вероятностях P(Ai/Vk) ошибок частных решений независимых экспертов. Важно отметить, что при решении практических задач правило (6) может быть использовано не только для интеграции решений группы людей, но и для совокупности различных алгоритмов.
Для улучшения эффективности системы поддержки принятия решений предложено помимо реализации в ней самого решающего правила (6) обеспечить возможность постоянного улучшения вероятностных характеристик, фигурирующих в этом правиле, на основе рекуррентных процедур (12) и (13).
Рассмотренный подход нашел практическое применение при построении коллективного решающего правила для диагностики кардиологических патологий у больных с неизмененной ЭКГ на основе интеграции решений совокупности алгоритмов интерпретации карт плотностей тока в плоскости сердца [21].
Список литературы
1. Ларичев О.И. Наука и искусство принятия решений. – М: Наука, 1979. – 200 с.
2. Макаров И.М. Теория выбора и принятия решений. – М.: Наука,1987. – 350 с.
3. Макеев С.П., Шахнов И.Ф. Упорядочение альтернатив на основе расплывчатых оценок: Сообщения по прикладной математике.– М.: ВЦАН СССР, 1989. – 42 с.
4. Миркин Б.Г. Проблема группового выбора. – М.: Наука, 1974. – 256 с.
5. Мулен Э. Кооперативное принятие решений: аксиомы и модели. – М: Мир, 1991.–464 с.
6. Васильев В.И. Распознающие системы (справочник).-К.Наукова думка.-1983.- 422 с.
7. Барабаш Ю.Л. Коллективные статистические решения при распознавании. – М.: Радио и связь, 1983.–224 с.
8. On combining classifiers / J. Kittler, M. Hatef, R.P.W. Duin, J. Matas// IEEE Transactions on Pattern Analysis and Machine Intelligence.- 1998.- № 20.- P. 226–239.
9. Pranke J., Mandler E. A Comparison of Two Approaches for Combining the Votes of Cooperating Classifiers//Proceedings 11-th IAPR International Conference on Pattern Recognition,1992.- V. 2.- P. 611-614.
10. Kimura F., Shridhar M Handwritten numerical recognition based on multiple algorithms// Pattern Recognition, 1991.- V. 24.- No. 10.- P. 969-983.