Реферат: Оксисоединения

спирт

Mg2+ + X- + H2 O

Поскольку образовавшийся в процессе реакции Mg(OH)X представляет собой желатинообразное вещество, с которым трудно работать, поэтому вместо воды обычно используют разбавленную минеральную кислоту (HCl, H2 SO4 ), так что образуются растворимые в воде соли магния.

В аналогичном синтезе для получения первичных спиртов, содержащих на два атома углерода больше, чем исходный реактив Гриньяра, используют окись этилена.

H2 C -CH2 + RMgX RCH2 CH2 HMgX RCH2 CH2 OH

H2 O первичный спирт

O + 2 атома углерода

Окись этилена

Органическая группа опять связывается с углеродом, а магний - с кислородом, но при этом разрушается углерод - кислородная s-связь в сильно напряжённом трёхчленном кольце.

Промышленные способы получения спиртов.

Метиловый спирт в промышленности получают из оксида углерода и водорода в присутствии катализаторов. В разных условиях можно получить как чистый метиловый спирт

350 -400 ° C , 21,27 Мпа

СО + 2Н2 СН3 ОН

катализатор

так и смесь его первичных гомологов, начиная с этилового спирта (синтол).

Метанол в больших масштабах получают гидрированием СО водородом примерно при 400°С и давлении 200 кгс/см2 над катализатором, представляющим собой смесь окиси хрома и окиси цинка.

В производстве синтола в качестве катализатора применяют железо и кобальт и процесс ведут при давлении в несколько десятков атмосфер и повышенной температуре.

4. Общим методом синтеза спиртов с небольшим молекулярным весом (этиловый, изопропиловый, втор-бутиловый, трет-бутиловый) является гидратация олефинов в присутствии серной кислоты. В зависимости от строения олефина образуются вторичные и третичные спирты (из первичных спиртов таким путём можно получить только этиловый, R = H):

H2 O

R─CH=CH2 + H2 SO4 R─CH─CH3 RCHCH3 + H2 SO4

| |

OSO3 H OH

R R

| H+ |

C=CH2 + H2 O C─CH3

| / |

R’ R ’OH

Реакция начинается с атаки ионом водорода того углеродного атома, который связан с бóльшим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод (правило Марковникова). После этого к соседнему углероду присоединяется вода с выбросом Н+ .

Важный способ получения этилового спирта, известный с древнейших времён, заключается в ферментативном гидролизе некоторых углеводов, содержащихся в различных природных источниках (фрукты, картофель, кукуруза, пшеница и др.), например:

С6 Н12 О62 Н5 ОН + 2СО2

глюкоза

Химические свойства спиртов

Ряд химических свойств спиртов является общим для всех спиртов; имеются также и реакции, по-разному протекающие для первичных, вторичных и третичных спиртов.

1. Реакци с разрывом O -H связи

Образование алкоголятов металлов. Алифатические спирты - слабые кислоты. Кислотность спиртов в зависимости от строения убывает в ряду: первичные > вторичные > третичные. При действии на спирты щелочных металлов, в частности натрия, происходит, хотя и менее бурно, взаимодействие, подобное реакции натрия с водой:

2ROH + 2Na 2RONa + H2

Такого типа металлические производные спиртов носят общее название алкоголяты (отдельные представители: метилат натрия СН3 ОNa, этилат натрия С2 Н5 ОNa). Их называют также алкоксидами (метоксид натрия, этоксид и т.д.). С увеличением молекулярной массы спирта реакционная способность их при взаимодействии с натрием уменьшается.

Известны алкоголяты и других металлов, кроме щелочных, но они образуются косвенными путями. Так, щелочноземельные металлы непосредственно со спиртами не реагируют. Но алкоголяты щелочноземельных металлов, а также Mg, Zn, Cd, Al и других металлов, образующих реакционноспособные металлорганические соединения, можно получить действием спирта на такие металлорганические соединения. Например:

2CH3 OH + Zn (CH3 )2 (CH3 O)2 Zn + 2CH4

Алкоголяты спиртов широко применяют в органическом синтезе. Так как вода - более сильная кислота, чем спирты, то в присутствии воды алкоголяты разлагаются с выделением исходных спиртов:

CH3 ONa +H2 O CH3 OH + NaOH

Метилат натрия метанол

Поэтому алкоголяты невозможно получить при действии гидроксидов металлов на спирты:

ROH + NaOH RONa + H2 O

С другой стороны, спирты проявляют слабоосновные свойства, образуя с сильными кислотами более или менее устойчивые соли:

H Br-

½

ROH + HBr R¾O+ ¾H

Оксониевые соли

Образование сложных эфиров спиртов (реакция этерификации). При действии кислородных минеральных и органических кислот на спирты происходит реакция, которую можно представить следующими примерами:

HO RO

½½

ROH + SO2 SO2 + H2 O

½½

HO HO

HO RO

½½

2ROH + SO2 SO2 + 2H2 O

½½

HO RO

O O ** OH H¾O+ ¾H

║ H+ ║ R’OH ½½-H2 O

R¾C¾OH R¾C+ ¾OH ** R¾C¾OH R¾C¾OH R¾C+ ¾OH

Карбоновая½½½

К-та R’-O+ ¾H R’-O R’-O

O

R¾C¾OR’

Сложные эфиры

Такого рода взаимодействие спирта с кислотами называется реакцией этерификации, а полученные вещества – сложными эфирами данного спирта и данной кислоты. Реакция этерификации спиртов сильными минеральными кислотами (такими как H2 SO4 ) протекает быстро и не требует использования катализаторов. С карбоновыми кислотами скорость реакции этерификации значительно увеличивается в присутствии катализаторов. В качестве последних обычно используют минеральные кислоты в небольших количествах.

Внешне уравнение этой реакции подобно уравнению нейтрализации щёлочи кислотой:

NaOH + HNO3 = NaNO3 + H2 O

Однако глубоким различием этих реакций является то, что нейтрализация – ионная, неизмеримо быстро протекающая реакция, которая сводится, в сущности, к взаимодействию ионов:

Н+ + ОН- → Н2 О

Реакция этерификации идёт иным путём. Спирт в большинстве случаев реагирует, отдавая не гидроксил (как щёлочь при нейтрализации), а водород гидроксильной группы; кислоты (органические и некоторые, но не все, минеральные) отдают свой гидроксил. Этот механизм был установлен при помощи спирта, меченного изотопом кислорода 18 О. Как оказалось, при взаимодействии такого спирта с кислотами RCOOH выделяется обычная вода, а не Н2 18 О.

Образование сложных эфиров при действии на спирты хлорангидридов неорганических и органических кислот . Взаимодействие хлорангидридов с первичными спиртами:

ROH + ClN=O → RO─N=O + HCl

3ROH + PCl3 → (RO)3 P + 3HCl

O O

║ ║

ROH + Cl─C─CH3 → RO─C─CH3 + HCl

O O

║ ║

ROH + Cl─C─Cl→ RO─C─CCl + HCl

2. Реакции с разрывом С ¾O связи.

Образование галогенидов.

При действии неорганических галогенангидридов на третичные и вторичные спирты происходит в основном обмен гидроксила на галоген:

3(CH3 )3 COH + PBr3 → 3(CH3 )3 CBr + P(OH)3

Обмен гидроксила на галоген происходит и при действии PBr3 и PI3 на первичные спирты:

3C2 H5 OH + PBr3 → 3C2 H5 Br + P(OH)3

При действии галогенводородных кислот на спирты также образуются алкилгалогениды.

Реакция может протекать либо по механизму SN 2 , либо по SN 1 . Например:


Br-

RCH2 OH + H+ → R¾CH2 ¾O+ ¾O → RCH2 Br + H2 O SN 2

½

H для первичных спиртов

R R -H2 O R Br- R

R’¾C¾OH + H+ → R’¾C¾O+ ¾H R’¾C+ → R’¾C¾Br SN 1

R” R” ½ R” R”

H для вторичных и третичных спитртов

Для успешной замены гидроксильной группы на хлор используют реактив Лукаса (соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях изменяется в ряду: третичные>вторичные>первичные.

3. Реакции с участием группы OH и атома водорода, стоящего у соседнего атома углерода.

Дегидратация спиртов в олефины. Все спирты (кроме метилового) при пропускании их паров над нагретой до ~375°С окисью алюминия отщепляют воду и образуют олефин:

Al2 O3

СН3 ─СН2 ОН СН2 =СН2 + Н2 О

Особенно легко элиминируется вода из третичных спиртов.

Дегидрогенизация. Образование разных продуктов в реакциях дегидрогенизации и окисления является важнейшим свойством, позволяющим отличить первичные, вторичные и третичные спирты.

При пропускании паров первичного или вторичного, но не третичного спирта над металлической медью при повышенной температуре происходит выделение двух атомов водорода, и спирт превращается в альдегид:

Cu

RCH2 OH → R−C−H + H2

200-300 °C ║

O

Вторичные спирты дают в этих условиях кетоны:

R

\ Cu

CHOH → R’−C−R + H2

/ 200-300 °C ║

R’ O

Окисление. Для окисления спиртов обычно используют сильные окислители: KMnO4, K2 Cr2 O7 и H2 SO4 . При окислении первичных спиртов образуются альдегиды, которые далее могут окисляться до карбоновых кислот:

RCH2 OH + [O] → R─C─H + H2 O

O

R

\

CHOH + [O] → R’−C−R + H2 O

/ ║

R’ O

Вторичные спирты при окислении превращаются в кетоны:

OH O

½[O] ║

CH3 CHCH3 → CH3 CCH3

Пропанол-2 пропанон-2

Третичные спирты значительно труднее окисляются, чем первичные и вторичные, причём с разрывом связей C¾C(OH):

(а) O O CH3

║ ║ ½

H¾C¾OH + CH3 CH2 C¾CHCH3

Муравьиная к-та 2-метилпентанон-3

CH3 O O CH3

½[O] (б) ║ ║ ½

CH3 CH2 ¾ C¾OH CH3 ¾C¾OH + CH3 C¾CHCH3

½Уксусная к-та 2-метилбутанон-3

CH3 CHCH3

2,3-диметилпентанон-3 O O

(в) ║ ║

CH3 CCH3 + CH3 CH2 CCH3

Ацетон бутанон-2

Двухатомные спирты, или гликоли (алкандиолы)

Двугидроксильные производные алканов (открыты Вюрцем) носят название гликолей или алкандиолов. Гидроксилы в алкандиолах находятся либо при соседних, либо более удалённых друг от друга углеродных атомах. 1,2-Гликоли имеют сладкий вкус, откуда и происходит название класса. Низшие гликоли – смешивающиеся с водой вязкие жидкости большей плотности, чем одноатомные спирты. Кипят при высокой температуре. Гликоли с короткой углеродной цепью, и прежде всего этиленгликоль, не растворяются в углеводородах и эфире, но смешиваются с водой и спиртами; как растворители они ближе стоят к воде и метанолу, чем к обычным органическим растворителям.

Способы получения

В принципе гликоли могут быть получены всеми синтетическими способами получения спиртов.

Гидролиз дигалогенпроизводных:

ClCH2 ─CH2 Cl + 2H2 O → HOCH2 ─CH2 OH + 2HCl

или

ClCH2 ─CH2 OH + H2 O → HOCH2 ─CH2 OH + HCl

Восстановление сложных эфиров двухосновных кислот:

O O

║ ║

C2 H5 O─C─(CH2 )n ─C─OC2 H5 + 8Na+6C2 H5 OH → HOCH2 ─(CH2 )n ─CH2 OH +8C2 H5 ONa

3CH2 =CH2 + 4H2 O + 2KMnO4 → 3HOCH2 ─CH2 OH + 2KOH + 2MnO2

Получение гликолей через хлоргидрины. Действием хлора и воды на олефин можно получить хлоргидрин, например ClCH2 ─CH2 OH. Хлоргидрин может быть превращён гидролизом непосредственно в гликоль.

Пинаконы получают восстановлением (неполным) кетонов электрохимичес?

К-во Просмотров: 586
Бесплатно скачать Реферат: Оксисоединения