Реферат: Определенный интеграл
.
5. Замена переменной в определенном интеграле
Теорема 3. Пусть функция непрерывна на отрезке . Тогда, если: 1) функция и ее производная непрерывны при ; 2) множеством значений функции при является отрезок ; 3) , , то справедлива формула
, (3)
которая называется формулой замены переменной в определенном интеграле.
Заметим, что как и в случае неопределенного интеграла, использование замены переменной позволяет упростить исходный интеграл, приблизив его к табличному. При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования и (для этого надо решить относительно переменной t уравнения и )).
На практике часто вместо подстановки используют подстановку . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: , .
Пример 3 . Вычислить интеграл
Решение. Введем новую переменную по формуле . Определим и . Возведя в квадрат обе части равенства , получим , откуда . Находим новые пределы интегрирования. Для этого в формулу подставим старые пределы и . Получим: , откуда и, следовательно, ; , откуда и, следовательно, . Таким образом:
.
Пример 4. Вычислить интеграл .
Решение. Воспользуемся универсальной тригонометрической подстановкой. Положим , откуда , . Найдем новые пределы интегрирования: если , то ; если , то . Значит, . Следовательно:
.
Пример 5. Вычислить интеграл .
Решение. Положим , тогда , откуда . Находим новые пределы интегрирования: ; . Имеем: . Следовательно:
.
6. Интегрирование по частям
Теорема 4. Пусть функции и имеют непрерывные производные на отрезке . Тогда имеет место следующая формула интегрирования по частям:
. (4)
Доказательство
Так как , то функция является первообразной для функции . Тогда по формуле Ньютона–Лейбница получаем
,
откуда
.
Пример 6. Вычислить .
Решение. Положим , отсюда . По формуле (4) находим