Реферат: Определенный интеграл
Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным.
Рассмотрим вначале несобственные интегралы с бесконечными пределами интегрирования.
Определение. Пусть функция определена и непрерывна на промежутке , тогда
(12)
называется несобственным интегралом с бесконечным верхним пределом интегрирования (несобственным интегралом I рода).
Если существует и конечен, то несобственный интеграл называется сходящимся ; если данный предел не существует или равен , то несобственный интеграл называется расходящимся .
Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью , слева – отрезком прямой и неограниченной справа (рис. 15).
Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.
Рис. 15
Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования:
. (13)
Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся.
Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом:
, (14)
где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).
Пример 16. Исследовать на сходимость несобственные интегралы:
а) ; б); в) ; г) .
Решение. а) , следовательно, данный интеграл расходится;
б)
. Так как при предел не существует, то интеграл расходится;
в)
Значит, несобственный интеграл сходится и его значение равно ;
г) = [выделим в знаменателе полный квадрат: ] = [замена:
] =
Значит, несобственный интеграл сходится и его значение равно .
5. Несобственные интегралы от неограниченных функций
Пусть функция непрерывна на конечном промежутке , но не ограничена на этом промежутке.