Реферат: Определенный интеграл
Из условия задачи следует, что , . По формуле (9) получаем
.
Рис. 10
Рис. 11
Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d , осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле
. (10)
|
Рис. 12
Пример 14 . Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х 2 = 4у, у = 4, х = 0 (рис. 13).
Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:
.
Рис. 13
3. Длина дуги плоской кривой
Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).
Рис. 14
Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.
Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле
. (11)
Пример 15 . Вычислить длину дуги кривой , заключенной между точками, для которых .
Решение. Из условия задачи имеем . По формуле (11) получаем:
.
4. Несобственные интегралы с бесконечными пределами интегрирования
При введении понятия определённого интеграла предполагалось, что выполняются следующие два условия:
а) пределы интегрирования а и являются конечными;