Реферат: Оптимизационные модели принятия решений

Рис. 2.4 Данные для решения примера 3

Пример 4. Размещение проектов на предприятиях

Имеется инвестиционных возможностей (вариантов проектов), которые можно реализовать на предприятиях. Эффективность реализации каждой инвестиции на каждом из объектов задана в таблице 2.2.

Таблица 2.2

Инвестиционные проекты () Объекты ()
I II III IV V
1 0.12 0.02 0.50 0.43 0.15
2 0.71 0.18 0.81 0.05 0.26
3 0.84 0.76 0.26 0.37 0.52
4 0.22 0.45 0.83 0.81 0.65
5 0.49 0.02 0.50 0.25 0.27

Целевой функцией, подлежащей оптимизации, является функция

где - искомые распределения инвестиций по объектам.

Таким образом, по смыслу величина есть ожидаемый результат от осуществления всех инвестиционных проектов. Ограничениями в данном случае являются следующие соотношения

означающие, что на каждом объекте может быть реализован лишь один проект, и

означающие, что должны быть реализованы все проекты. Необходимо распределить проекты по объектам таким образом, чтобы суммарная эффективность от реализации всех проектов была максимальной.

Решение

Введем данные на рабочий лист (Рис.2.5.).

В ячейку B17 введем формулу =СУММ(B12:B16) и скопируем эту формулу в диапазон C17:F17. Аналогично, введем формулу =СУММ(B12:F12) в ячейку G12 и скопируем ее в диапазон G13:G16. Введем в ячейку для целевой функции (I13) формулу

=СУММПРОИЗВ(B4:F8;B12:F16)

Рис. 2.5 Данные для решения примера 4

Для решения задачи с помощью Поиска решения необходимо ввести ограничения в соответствии с приведенным ниже рисунком.


Поиск решения дает ответ

(остальные ), .

Нелинейные модели оптимизации в управлении

В настоящем разделе мы кратко рассмотрим задачи нелинейной оптимизации (называемые иначе оптимизационными задачами нелинейного программирования), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности в задачах подобного типа могут относиться, в частности, к одной из двух категорий:

· Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например непропорциональные зависимости между объемом производства и затратами, между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции, между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса, между выручкой и объемом реализации и т.п.

· Установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например, правила расчета с потребителями энергии или других видов услуг, правила определения страховых уровней запаса продукции, гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин, различного рода договорные условия взаимодействия между партнерами по бизнесу и др.

В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.

Вообще говоря, решение нелинейных задач по сложности значительно превосходит решение рассмотренных ранее задач линейной оптимизации. В связи с этим долгое время в практике экономического управления модели линейной оптимизации успешно применялись даже при наличии нелинейности. В одних случаях нелинейность была несущественна и ею можно было пренебречь, в других – проводилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились, так называемые, аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, часто встречаются задачи, для которых нелинейность является существенной и упомянутые выше методы аппроксимации неэффективны, в связи с чем, нелинейность необходимо учитывать в явном виде.

В отличие от задачи линейной оптимизации (линейного программирования), не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может быть эффективен при решении задач одного типа и неприемлемым для задач другого типа. В связи с этим разработаны алгоритмы для решения каждого класса (типа) задач. Следует иметь в виду, что даже программы, ориентированные на решение определенного класса задач, не гарантируют правильность решения любых задач этого класса и оптимальность решения следует проверять в каждом конкретном случае.

Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):

К-во Просмотров: 407
Бесплатно скачать Реферат: Оптимизационные модели принятия решений