Реферат: Оптимизационные модели принятия решений
Рис. 2.4 Данные для решения примера 3
Пример 4. Размещение проектов на предприятиях
Имеется инвестиционных возможностей (вариантов проектов), которые можно реализовать на предприятиях. Эффективность реализации каждой инвестиции на каждом из объектов задана в таблице 2.2.
Таблица 2.2
Инвестиционные проекты () | Объекты () | ||||
I | II | III | IV | V | |
1 | 0.12 | 0.02 | 0.50 | 0.43 | 0.15 |
2 | 0.71 | 0.18 | 0.81 | 0.05 | 0.26 |
3 | 0.84 | 0.76 | 0.26 | 0.37 | 0.52 |
4 | 0.22 | 0.45 | 0.83 | 0.81 | 0.65 |
5 | 0.49 | 0.02 | 0.50 | 0.25 | 0.27 |
Целевой функцией, подлежащей оптимизации, является функция
где - искомые распределения инвестиций по объектам.
Таким образом, по смыслу величина есть ожидаемый результат от осуществления всех инвестиционных проектов. Ограничениями в данном случае являются следующие соотношения
означающие, что на каждом объекте может быть реализован лишь один проект, и
означающие, что должны быть реализованы все проекты. Необходимо распределить проекты по объектам таким образом, чтобы суммарная эффективность от реализации всех проектов была максимальной.
Решение
Введем данные на рабочий лист (Рис.2.5.).
В ячейку B17 введем формулу =СУММ(B12:B16) и скопируем эту формулу в диапазон C17:F17. Аналогично, введем формулу =СУММ(B12:F12) в ячейку G12 и скопируем ее в диапазон G13:G16. Введем в ячейку для целевой функции (I13) формулу
=СУММПРОИЗВ(B4:F8;B12:F16)
Рис. 2.5 Данные для решения примера 4
Для решения задачи с помощью Поиска решения необходимо ввести ограничения в соответствии с приведенным ниже рисунком.
Поиск решения дает ответ
(остальные ), .
Нелинейные модели оптимизации в управлении
В настоящем разделе мы кратко рассмотрим задачи нелинейной оптимизации (называемые иначе оптимизационными задачами нелинейного программирования), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности в задачах подобного типа могут относиться, в частности, к одной из двух категорий:
· Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например непропорциональные зависимости между объемом производства и затратами, между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции, между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса, между выручкой и объемом реализации и т.п.
· Установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например, правила расчета с потребителями энергии или других видов услуг, правила определения страховых уровней запаса продукции, гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин, различного рода договорные условия взаимодействия между партнерами по бизнесу и др.
В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.
Вообще говоря, решение нелинейных задач по сложности значительно превосходит решение рассмотренных ранее задач линейной оптимизации. В связи с этим долгое время в практике экономического управления модели линейной оптимизации успешно применялись даже при наличии нелинейности. В одних случаях нелинейность была несущественна и ею можно было пренебречь, в других – проводилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились, так называемые, аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, часто встречаются задачи, для которых нелинейность является существенной и упомянутые выше методы аппроксимации неэффективны, в связи с чем, нелинейность необходимо учитывать в явном виде.
В отличие от задачи линейной оптимизации (линейного программирования), не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может быть эффективен при решении задач одного типа и неприемлемым для задач другого типа. В связи с этим разработаны алгоритмы для решения каждого класса (типа) задач. Следует иметь в виду, что даже программы, ориентированные на решение определенного класса задач, не гарантируют правильность решения любых задач этого класса и оптимальность решения следует проверять в каждом конкретном случае.
Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):