Реферат: Основні правила диференціювання Таблиця похідних
Перейдемо в цій рівності до границі . За умови теореми
а
Отже,
Теорему доведено.
Наслідок . Постійний множник можна виносити за знак похідної, тобто, якщо , то
(6.19)
5. Похідна від частки.
Теорема . Якщо функції в точці мають похідні і , то функція також у точці має похідну і похідна дорівнює
(6.20)
Д о в е д е н н я. Надамо приросту . Тоді функції матимуть відповідно прирости , а функція - приріст
Знайдемо відношення
За умовою теореми
а , тому
Теорему доведено.
Наслідок 1. Якщо знаменник дробу - стала величина, то
(6.21)
Наслідок 2. Якщо чисельник дробу стала величина, то
(6.22)
6. Похідна від оберненої функції.
Теорема. Нехай функція задовольняє всім умовам теореми про існування оберненої функції і в точці має похідну . Тоді обернена до неї функція у точці має також похідну: .
Д о в е д е н н я. Надамо приросту . Тоді функція дістане приріст , причому, внаслідок монотонності функції , матимемо , якщо . Тоді відношення можна записати так: Перейдемо в цій рівності до границі при . Внаслідок неперервності оберненої функції , тобто