Реферат: Основні правила диференціювання Таблиця похідних
1. Знайти похідну від функції .
Р о з в ’ я з о к. Введемо позначення . Тоді матимемо складну функцію і задовольняють умовам теореми для . Отже,
2. Знайти похідну від функції .
Р о з в ’ я з о к. Введемо позначення . Тоді матимемо складну функцію , .
Тому
Похідна від степенево-показникової функції.
Означення . Функція , де і - функції , називається степенево-показниковою функцією.
Степенево-показникову функцію не можна диференціювати ні за формулою похідної степеневої функції, ні за формулою показникової функції, оскільки вона не є ні тою ні другою. Одержимо окрему формулу.
Нехай дана функція , де . Прологарифмувавши обидві частини рівності, маємо
Диференціюємо обидві частини цієї рівності по як складні функції:
Звідси
або
(6.44)
Правило диференціювання степенево-показникової функції: щоб продиференціювати степенево-показникову функцію, достатньо знайти від неї похідну як від показникової функції (тимчасово вважаємо основу сталою), похідну як від степеневої функції (вважаємо показник сталим) та результати додати.
Приклади .
1. Знайти похідну від функції .
Р о з в ’ я з о к.
2. Знайти похідну від функції .
Р о з в ’ я з о к.
Зауваження . Застосований в цьому параграфі прийом для знаходження похідних, коли спочатку знаходять похідну логарифму даної функції, широко використовується при диференціюванні функцій. Цей прийом часто спрощує обчислення.
Приклад .
Знайти похідну від функції