Реферат: Первичная статистическая обработка информации
==1,984
Интервальная оценка (доверительный интервал) для МО равна:
Этим отрезком с вероятностью 0,95 накрывается истинное (неизвестное) значение МО.
Интервальная оценка среднего квадратического отклонения (доверительный интервал) определяется по формуле:
,
где q определяется по таблице
q = q(100;0,95)=0,143
Доверительный интервал для оценки с.к.о. равен
42,493(1-0,143)< <42,493(1+0,143)
36,42<<48,57
Этим отрезком с вероятностью 0,95 накрывается истинное (неизвестное) значение с.к.о.
3.2. На основании изучения гистограммы (рис.3) выдвинем гипотезу о нормальном распределении генеральной совокупности случайных величин X - трудозатрат на доработки на объекте. Нулевую гипотезу подвергнем статистической проверке на противоречивость данным, полученным из опыта (табл.1) по критериям - Пирсона и - Колмогорова.
В соответствии с методом моментов положим параметры нормального распределения равным оценкам:
3.3. На графиках гистограммы и эмпирической функции распределения (рис.1,3) построим сглаживающие функции (теоретические кривые) плотности вероятности и функции распределения в соответствии с их выражениями:
Для построения сглаживающих кривых используем таблицы нормированной нормальной плотности вероятности
и нормированной нормальной функции распределения
Для входа в таблицы нормируем случайную величину Х по формуле:
Значения нормированных величин на границах разрядов, численные значения сглаживающих кривых на границах разрядов приведены в таблице 6.
Таблица 6
Границы разрядов | 280 | 320 | 360 | 400 | 440 | 480 | 520 |
-2,92 | -1,98 | -1,04 | -0,10 | 0,84 | 1,78 | 2,73 | |
0,0056 | 0,0562 | 0,2341 | 0,3970 | 0,2803 | 0,0818 | 0,0096 | |
0,013 | 0,132 | 0,55 | 0,93 | 0,66 | 0,19 | 0,023 | |
0 | 0,024 | 0,14917 | 0,4602 | 0,79955 | 0,96246 | 0,99683 |
3.4. Статистическую проверку гипотезы о нормальном распределении случайной величины Х по выборке из 100 значений осуществим по двум различным критериям.
1) Критерий - Пирсона.
Суммарная выборочная статистика - Пирсона рассчитывается по результатам наблюдений по формуле:
,