Реферат: Построение эйлерова цикла. Алгоритм Форда и Уоршелла
1. Эйлеровы цепи и циклы
Рассматриваемая задача является одной из самых старейших в теории графов. В городе Кенигсберге (ныне Калининград) имелось семь мостов, соединяющих два берега реки Преголь, и два основа на ней друг с другом (рис. 1а). Требуется, начав путешествие из одной точки города пройти по всем мостам по одному разу и вернуться в исходную точку.
а) б)
Рис. 1.
Если поставить в соответствие мостам ребра, а участкам суши — вершины, то получится граф (точнее псевдограф), в котором надо найти простой цикл, проходящий через все ребра. В общем виде эта задача была решена Эйлером в 1736 г.
Определение 1. Эйлеровой цепью в неориентированном графе G называется простая цепь, содержащая все ребра графа G . Эйлеровым циклом называется замкнутая Эйлерова цепь. Аналогично, эйлеров путь в орграфе G — это простой путь, содержащий все дуги графа G . Эйлеров контур в орграфе G — это замкнутый эйлеров путь. Граф, в котором существует эйлеров цикл, называется эйлеровым .
Простой критерий существования эйлерова цикла в связном графе дается следующей теоремой.
Теорема 1. (Эйлер) Эйлеров цикл в связном неориентированном графе G (X , E ) существует только тогда, когда все его вершины имеют четную степень.
Доказательство. Необходимость. Пусть m - эйлеров цикл в связном графе G , x — произвольная вершина этого графа. Через вершину x эйлеров цикл проходит некоторое количество k (k ³1) раз, причем каждое прохождение, очевидно, включает два ребра, и степень этой вершины равна 2k , т.е. четна, так как x выбрана произвольно, то все вершины в графе G имеют четную степень.
Достаточность. Воспользуемся индукцией по числу m ребер графа. Эйлеровы циклы для обычных (не псевдо) графов можно построить начиная с m =3.Легко проверить, что единственный граф с m =3, имеющий все вершины с четными степенями, есть граф K 3 (рис. 2). Существование эйлерова цикла в нем очевидно. Таким образом, для m =3 достаточность условий доказываемой теоремы имеет место. Пусть теперь граф G имеет m >3 ребер, и пусть утверждение справедливо для всех связных графов, имеющих меньше, чем m ребер. Зафиксируем произвольную вершину a графа G и будем искать простой цикл, идущий из a в a . Пусть m(a , x ) — простая цепь, идущая из a в некоторую вершину x . Если x ¹a , то цепь m можно продолжить из вершины x в некотором направлении. Через некоторое число таких продолжений мы придем в вершину z ÎX , из которой нельзя продлить полученную простую цепь. Легко видеть, что z = a так как из всех остальных вершин цепь может выйти (четные степени!); a в a она начиналась. Таким образом, нами построен цикл m, идущий из a в a . Предположим, что построенный простой цикл не содержит всех ребер графа G . Удалим ребра, входящие в цикл m, из графа G и рассмотрим полученный граф . В графе все вершины имеют четные степени. Пусть — компоненты связности графа , содержащие хотя бы по одному ребру. Согласно предположению индукции все эти компоненты обладают эйлеровыми циклами m1 , m1 , …, mk соответственно. Так как граф G связан, то цепь m встречает каждую из компонент. Пусть первые встречи цикла m с компонентами происходят соответственно в вершинах x 1 , x 2 , …, xk . Тогда простая цепь
n(a , a )=m(a , x 1 ) Um1 (x 1 , x 1 ) Um(x 1 , x 2 ) U…Umk (xk , xk ) Um(xk , a )
является эйлеровым циклом в графе G . Теорема доказана.
Замечание. Очевидно, что приведенное доказательство будет верно и для псевдографов, содержащих петли и кратные ребра (см. рис. 1,а).
Таким образом, задача о кенигсбергских мостах не имеет решения, так как соответствующий граф (см. рис. 1,б) не имеет эйлерова цикла из-за нечетности степеней все вершин.
Отметим, что из существования эйлерова цикла в неориентированном графе G не следует связность этого графа. Например, неориентированный граф G на рис. 3 обладает эйлеровым циклом и вместе с тем несвязен.
Совершенно также, как теорема 1, могут быть доказаны следующие два утверждения.
Теорема 2. Связный неориентированный граф G обладает эйлеровой цепью тогда и только тогда, когда число вершин нечетной степени в нем равно 0 или 2, причем если это число равно нулю, то эйлерова цепь будет являться и циклом.
Теорема 3. Сильно связный орграф G (X , E ) обладает эйлеровым контуром тогда и только тогда, когда для любой вершины x ÎX выполняется
.
Можно также обобщить задачу, которую решал Эйлер следующим образом. Будем говорить что множество не пересекающихся по ребрам простых цепей графа G покрывает его, если все ребра графа G включены в цепи mi . Нужно найти наименьшее количество таких цепей, которыми можно покрыть заданный граф G .
Если граф G — эйлеров, то очевидно, что это число равно 1. Пусть теперь G не является эйлеровым графом. Обозначим через k число его вершин нечетной степени. По теореме … k четно. Очевидно, что каждая вершина нечетной степени должна быть концом хотя бы одной из покрывающих G цепей mi . Следовательно, таких цепей будет не менее чем k /2. С другой стороны, таким количеством цепей граф G покрыть можно. Чтобы убедиться в этом, расширим G до нового графа , добавив k /2 ребер , соединяющих различные пары вершин нечетной степени. Тогда оказывается эйлеровым графом и имеет эйлеров цикл . После удаления из ребер граф разложится на k /2 цепей, покрывающих G . Таким образом, доказана.
Теорема 4. Пусть G — связный граф с k >0 вершинами нечетной степени. Тогда минимальное число непересекающихся по ребрам простых цепей, покрывающих G , равно k /2.
Алгоритм построения эйлерова цикла
Для начала отметим, что теорема 1 также дает метод построения эйлерова цикла. Здесь мы рассмотрим несколько иной алгоритм.
Пусть G (X , E ) — связный неорентированный граф, не имеющий вершин нечетной степени. Назовем мостом такое ребро, удаление которого из связного графа разбивает этот граф на две компоненты связности, имеющие хотя бы по одному ребру.
1°. Пусть a — произвольная вершина графа G . Возьмем любое ребро e 1 =(a , x 1 ) , инцидентное вершине a, и положим m = {e 1 }.
2°. Рассмотрим подграф G 1 (X , E\ m1 ). Возьмем в качестве e 2 ребро, инцидентное вершине x 1 и неинцидентное вершине a , которое также не является мостом в подграфе G 1 (если такое ребро e 2 существует!). Получим простую цепь m2 = {e 1 , e 2 }.
3°. Пусть e 2 = (x 1 , x 2 ), x ¹a . Рассмотрим подграф G 2 (X , E\ m2 ) и удалим из него все изолированные вершины. В полученном подграфе выберем ребро e 3 ÎE \ m2 , инцидентное вершине a , которое не является мостом в подграфе (если такое ребро e 3 существует!). Получим простую цепь
m3 = {e 1 , e 2 , e 3 }.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--