Реферат: Поверхневі інтеграли

,

яка визначає одиничний нормальний вектор до поверхні . Подвійний знак у цій формулі відповідає двом сторонам поверхні . З формули (8) випливає, що знак перед подвійним інтегралом збігається із знаком відповідного напрямного косинуса нормалі :

.

Якщо поверхня неоднозначно проектується на будь-яку координатну площину, то цю поверхню розбивають на частини, а інтеграл (8) – на суму інтегралів по одержаних частинах поверхні .

3. Формула Остроградського-Гаусса

Формула Остроградського-Гаусса встановлює зв'язок між поверхневим інтегралом по замкненій поверхні і потрійним інтегралом по просторовій області, обмеженій цією поверхнею. Ця формула є аналогом формули Гріна, яка, як відомо, встановлює зв'язок криволінійного інтеграла по замкненому контуру з подвійним інтегралом по плоскій області, обмеженій цим контуром.

Нехай замкнена область обмежена замкненою поверхнею , причому знизу та зверху обмежена гладкими поверхнями та , рівняння яких та (рис. 7).


Рисунок 7 – Замкнена область

Припустимо, що проекцією області на площину є область . Нехай в області визначено неперервну функцію , яка в цій області має неперервну похідну .

Розглянемо потрійний інтеграл

.

У правій частині цієї рівності перший подвійний інтеграл запишемо за допомогою поверхневого інтеграла по зовнішній стороні поверхні , а другий подвійний інтеграл – по зовнішній стороні поверхні . Враховуючи кути між нормаллю та віссю , отримуємо

.(13)

Аналогічно, припустивши, що функції , неперервні в області , можна отримати формули


,(14)

.(15)

Додавши почленно рівності (13), (14) і (15), отримаємо формулу

,(16)

яку називають формулою Остроградського-Гаусса. Ця формула справедлива і для довільної області , яку можна розбити на скінченне число областей, для яких виконуються рівності (13) – (15).

За допомогою формули Остроградського-Гаусса зручно обчислювати поверхневі інтеграли по замкнених поверхнях.

4. Формула Стокса

Формула Стокса встановлює зв'язок між поверхневим і криволінійним інтегралами. Нехай – поверхня, задана рівнянням , причому функції – неперервні в області – проекції поверхні на площину ;– контур, який обмежує , а – проекція контуру на площину , тобто – межа області .

Виберемо верхню сторону поверхні (рис. 8).


Рисунок 8 – Поверхня

Якщо функція неперервна разом із своїми частинними похідними першого порядку на поверхні , то справедлива формула

.(17)

поверхневий інтеграл формула стокс

К-во Просмотров: 281
Бесплатно скачать Реферат: Поверхневі інтеграли