Реферат: Призма и параллелепипед

Понятие призмы и виды призм

Понятие параллелепипеда

Свойства параллелепипеда

Дополнительные соотношения между элементами призмы

Задачи

Тесты

Глоссарий

Литература


Понятие призмы и виды призм

Рассмотрим два равных многоугольника и , расположенных в параллельных плоскостях и так, чтобы отрезки , соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Рис. 1

Каждый из n четырехугольников

…, (1)

является параллелограммом, так как имеет попарно параллельные противоположные стороны.

Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов (1), называется призмой.

Многоугольники и называются основаниями, а параллелограммы (1) – боковыми гранями призмы. Отрезки называются боковыми ребрами призмы. Эти ребра как противоположные стороны параллелограммов (1), следовательно приложенных друг к другу, равны и параллельны. Призму с основаниями и называют n – угольной призмой. На рисунке 2 изображены треугольная и шестиугольная призмы.

Рис. 2

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной, если ее основания – правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники. На рисунке 2 изображена правильная шестиугольная призма. [1, 62]

Понятие параллелепипеда

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани – параллелограммы.

На рисунке 3 изображен наклонный параллелепипед, а на рисунке 4 – прямой параллелепипед.


Рис. 3
Рис. 4

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. [4, 301]

Параллелепипед, боковые ребра которого перпендикулярны к плоскости основания, называется прямым параллелепипедом. У него все боковые грани прямоугольники, а основания параллелограммы. Если все грани параллелепипеда – прямоугольники, то его называют прямоугольным параллелепипедом. Длины трех его ребер, которые выходят из одной вершины, называются измерениями прямоугольного параллелепипеда.

Прямоугольный параллелепипед, все три измерения которого равны, называется кубом. Соотношение между различными видами параллелепипеда приведено в схеме: [2, 115]


Свойства параллелепипеда

Теорема:

У параллелепипеда:

1 ) противолежащие грани равны и параллельны;

2 ) все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Доказательство:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 601
Бесплатно скачать Реферат: Призма и параллелепипед