Реферат: Радиопротекторы

3. Уменьшение числа тромбоцитов происходит парал­лельно с сокращением количества нейтрофилов или на не­сколько суток позже. Дефицит тромбоцитов вместе с ра­диационным поражением эндотелия сосудов проявляется геморрагическим синдромом.

4. Содержание эритроцитов ежесуточно снижается при­мерно на 0,8%, что усугубляется кровотечениями и явле­ниями гемолиза. За первый месяц после облучения потеря эритроцитов может достигнуть 25% от исходного уровня. Анемия замедляет процессы репарации, а дефицит кисло­рода в костном мозге нарушает его способность восста­навливать гемопоэз.

У мышей Д0 стволовых клеток кишечника составляет 4–6 Гр. Следовательно, они в несколько раз более радио­устойчивы, чем стволовые кроветворные клетки. При дозах 10—100 Гр решающим в течении пострадиационного про­цесса является поражение кишечного эпителия. Основная причина его гибели состоит в том, что в условиях денуда­ции слизистой оболочки тонкого кишечника происходит потеря жидкости, электролитов и белков, сопровождаемая микробной инвазией и токсемией, ведущими к септическо­му шоку и недостаточности кровообращения. Радиацион­ные изменения эпителиального слоя желудка, толстого кишечника и прямой кишки примерно такие же, но выра­жены значительно меньше. Хотя решающим патогенетиче­ским фактором данного синдрома является денудация сли­зистой оболочки кишечника, следует иметь в виду, что параллельно с этим постепенно развиваются нарушения кроветворной функции. Одновременное тяжелое необрати­мое поражение обеих критических систем организма при облучении в дозах 10–100 Гр приводит к быстрой и не­избежной гибели.

При однократном общем облучении в дозах свыше 100 Гр большинство млекопитающих гибнет в результате так называемой церебральной смерти в сроки до 48 ч. Радиационное поражение ЦНС объясняется повреждением нервных клеток и сосудов мозга. При исключительно больших дозах облучения возможно специфическое воз­действие радиации на дыхательный центр в продолговатом мозге. Радиационный синдром ЦПС принципиально отличается от костномозгового синдрома тем, что при его раз­витии не происходит выраженного клеточного опустоше­ния. К характерным признакам этого синдрома относятся непрекращающиеся тошнота и рвота, упорный понос, бес­покойство, дезориентация, атаксия, тремор, судороги, а также апатия, сонливость, нарушение сознания. Сравни­тельно быстро наступает полное истощение организма, заканчивающееся смертью.

Когда речь идет о чувствительности организма к иони­зирующему излучению, рассматривается, как правило, диа­пазон доз, вызывающих гибель при проявлениях костно­мозгового синдрома. Пострадиационные изменения в дру­гих (не критических) тканях могут оказать значительное воздействие на важные функции организма (зрение, ре­продуктивные функции), в то же время не оказывая ре­шающего влияния на жизненный исход. В связи с нару­шением нервно-гуморальной регуляции в пострадиацион­ный патогенетический механизм вовлекаются все органы и ткани. Радиочувствительность же всего организма у млекопитающих приравнивается к радиочувствительности кроветворных клеток, так как их аплазия, возникающая после общего облучения в минимальных абсолютно смер­тельных дозах, приводит к гибели организма.

При оценке радиочувствительности организма и ана­лизе эффективности радиопротекторов учитываются дозы облучения, вызывающие конкретный летальный исход. Сублетальная доза не приводит к гибели ни одного живот­ного из облученной группы. Летальная доза вызывает смерть минимально одной, а максимально всех облучен­ных особей. Эта величина характеризуется процентом по­гибших особей в группе к определенному сроку после об­лучения. В эксперименте чаще всего применяется средняя летальная доза (гибель 50% животных к 30-м или 90-м суткам)—ЛД50/30 , ЛД50/90 . Минимальная абсолютно ле­тальная доза — это доза, при которой погибают все особи из облученной группы. Супралетальная доза больше ми­нимальной абсолютно летальной. Отдельные супралетальные дозы различаются лишь по продолжительности жизни животных после экспозиции, поскольку все они вызывают смерть 100% животных в облученной группе. Летальные дозы у млекопитающих, установленные только для одного вида воздействия на организм — облучения, значительно понизились бы в случае комбинации облучения с ожогами, ранениями и различными стрессовыми факторами.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАДИАЦИОННОЕ ПОРАЖЕНИЕ

На конечный биологический эффект влияют различные факторы, которые в основном делятся на физические , хи­мические и биологические .

Среди физических факторов на первом месте стоит вид излучения, характеризуемый относительной биологической эффективностью. Различия биологического действия обус­ловлены линейным переносом энергии данного вида иони­зирующего излучения, связанным с плотностью ионизации и определяющим способность излучения проникать в слои поглощающего его вещества. ОБЭ представляет величину отношения дозы стандартного излучения (изотоп 60 Со или рент­геновское излучение 220 кВ) к дозе исследуемого излуче­ния, дающей равный биологический эффект. Так как для сравнения можно выбрать множество биологических эф­фектов, для испытуемого излучения существует несколько величин ОБЭ. Если показателем пострадиационного дейст­вия берется катарактогенный эффект, величина ОБЭ для нейтронов деления лежит в диапазоне 5—10 в зависимо­сти от вида облученных животных, тогда как по важному критерию — развитию острой лучевой болезни — ОБЭ ней­тронов деления равняется примерно 1.

Следующим существенным физическим фактором явля­ется доза ионизирующего излучения, которая в Междуна­родной системе единиц (СИ) выражается в грэях (Гр). 1 Гр=100 рад, 1 рад=0,975 Р. От величины поглощенной дозы зависят развитие синдромов радиационного пораже­ния и продолжительность жизни после облучения.

При анализе отношения между дозой, получаемой ор­ганизмом млекопитающего, и определенным биологиче­ским эффектом учитывается вероятность его возникнове­ния. Если эффект появляется в ответ на облучение неза­висимо от величины поглощенной дозы, он относится к разряду стохастических. За стохастические принимаются, например, наследственные эффекты излучения. В отличие от них нестохастические эффекты наблюдаются по дости­жении определенной пороговой дозы излучения. В качест­ве примера можно указать помутнение хрусталика, бес­плодие и др.

В Рекомендациях Международной комиссии по радио­логической защите (№ 26, 1977 г.) стохастические и несто­хастические эффекты определены следующим образом: «Стохастическими называют те беспороговые эффекты, для которых вероятность их возникновения (а не столько их тяжесть) рассматривают как функцию дозы. Нестохасти­ческими называют эффекты, при которых тяжесть пора­жения изменяется в зависимости от дозы и, следовательно, для появления которых может существовать порог».

Химические радиозащитные вещества в зависимости от их эффективности снижают биологическое воздействие излучений в лучшем случае в 3 раза. Предотвратить воз­никновение стохастических эффектов они не могут.

К существенным химическим факторам, модифицирую­щим действие ионизирующего излучения, относится кон­центрация кислорода в тканях организма у млекопитаю­щих. Его наличие в тканях, особенно во время гамма- или рентгеновского облучения, усиливает биологическое воз­действие радиации. Механизм кислородного эффекта объ­ясняется усилением главным образом непрямого действия излучения. Присутствие же кислорода в облученной ткани по окончании экспозиции дает противоположный эффект.

Для характеристики облучения, наряду с величиной общей дозы, важное значение имеет продолжительность экспозиции. Доза ионизирующей радиации независимо от времени ее действия вызывает в облученном организме одно и то же число ионизаций. Различие, однако, состоит в объеме репарации радиационного поражения. Следова­тельно, при облучении меньшей мощности наблюдается меньшее биологическое поражение. Мощность поглощен­ной дозы выражается в грэях за единицу времени, напри­мер Гр/мин, мГр/ч и т. д.

Изменение радиочувствительности тканей организма имеет большое практическое значение. Данная книга по­священа радиопротекторам, а также веществам, снижаю­щим радиочувствительность организма, однако это не озна­чает, что мы недооцениваем исследования радиосенсиби­лизаторов; их изучение ведется прежде всего в интересах радиотерапии.

КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКА РАДИОЗАЩИТНЫХ ВЕЩЕСТВ

Радиозащитный эффект обнаружен у целого ряда веществ различной химической структуры. Поскольку эти разно­родные соединения обладают самыми различными, подчас противоположными свойствами, их трудно разделить по фармакологическому действию. Для проявления радиоза­щитного эффекта в организме млекопитающего в боль­шинстве случаев достаточно однократного введения радиопротекторов. Однако имеются и такие вещества, которые повышают радиорезистентность лишь после повторного введения. Различаются радиопротекторы и по эффективно­сти создаваемой ими защиты. Существует, таким образом, множество критериев, по которым их можно классифи­цировать.

С практической точки зрения радиопротекторы целесо­образно разделить по длительности их действия, выделив вещества кратковременного и длительного действия.

1. Радиопротекторы или комбинация радиопротекторов, обладающих кратковременным действием (в пределах не­скольких минут или часов), предназначены для однократ­ной защиты от острого внешнего облучения. Такие веще­ства или их комбинации можно вводить тем же особям и повторно. В качестве средств индивидуальной защиты эти вещества могут найти применение перед предполагае­мым взрывом ядерного оружия, вхождением в зону ра­диоактивного загрязнения или перед каждым радиотера­певтическим местным облучением. В космическом про­странстве они могут быть использованы для защиты космонавтов от облучения, вызванного солнечными вспыш­ками.

2. Радиозащитные вещества длительного воздействия предназначены для более продолжительного повышения радиорезистентности организма. Для получения защитного эффекта, как правило, необходимо увеличение интервала после введения таких веществ примерно до 24 ч. Иногда требуется повторное введение. Практическое применение этих протекторов возможно у профессионалов, работаю­щих с ионизирующим излучением, у космонавтов при дол­говременных космических полетах, а также при длитель­ной радиотерапии.

Поскольку протекторы кратковременного защитного действия чаще всего относятся к веществам химической природы, говорят о химической радиозащите.

С другой стороны, длительное защитное действие воз­никает после введения веществ в основном биологического происхождения; это обозначают как биологическую радио­защиту.

Требования к радиопротекторам зависят от места при­менения препаратов; в условиях больницы способ введе­ния не имеет особого значения. В большинстве случаев требования должны отвечать задачам использования радиопротекторов в качестве индивидуальных средств защиты. Согласно Саксонову и соавт. (1976) эти требования должны быть как минимум следующими:

— препарат должен быть достаточно эффективным и не вызывать выраженных побочных реакций;

— действовать быстро (в пределах первых 30 мин) и сравнительно продолжительно (не менее 2 ч);

— должен быть нетоксичным с терапевтическим ко­эффициентом не менее 3;

— не должен оказывать даже кратковременного отри­цательного влияния на трудоспособность человека или ослаблять приобретенные им навыки;

— иметь удобную лекарственную форму: для перорального введения или инъекции шприц-тюбиком объемом не более 2 мл;

— не должен оказывать вредного воздействия на орга­низм при повторных приемах или обладать кумулятивны­ми свойствами;

— не должен снижать резистентность организма к дру­гим неблагоприятным факторам внешней среды;

К-во Просмотров: 395
Бесплатно скачать Реферат: Радиопротекторы