Реферат: Расчет тонкопленочного конденсатора

, добротностью Q=10—100 и . При этом форма конденсатора может быть не только прямоуголь­ной, но и фигурной для наилучшего использования площади подложки.


РАСЧЕТ ТОНКОПЛЕНОЧНЫХ КОНДЕНСАТОРОВ.


Исходными данными для расчета тонкопленочных конденсаторов являются: номиналь­ная емкость С,[пФ]; допуск на номинал ± С[%]; максимальное рабочее напряжение [В]; рабочая частота [Гц]; тангенс угла потерь ; диапазон рабочих температур [°С]; технологиче­ские данные и ограничения, в том числе погрешность воспроиз­ведения удельной емкости и линейных размеров обкладок или их относительные cреднеквадратические отклонения коэффициент старения ; продолжительность работы или хранения и др.


Методика расчета


1. По заданной технологии и данным таблицы выбирают материал диэлектрика. Критериями выбора материала являются максимальные значения и минимальные значения ТКС, . Отметим, что на выбор материала диэлектрика суще­ственно влияет область применения ИМС. Так, конденсаторы на основе ИБС и АСС, которые обладают наибольшей диэлектриче­ской постоянной , применяют в линейных ИМС на частотах до 10 МГц, когда требуется высокая степень интеграции, повышен­ная стабильность параметров и надежность в эксплуатации. В ИМС частотной селекции и БИС, работающих при высоких температурах, целесообразно использование конденсаторов на основе БСС, которые обладают наименьшим ТКС и наибольшими значениями Q, в широком диапазоне частот и температур.

Конденсаторы на основе SiO и GeO, имевшие ранее широкое распространение ввиду простоты технологии, в настоящее время находят ограниченное применение из-за недостаточно высокой стабильности и надежности.

2. Из условия обеспечения электрической прочности с помощью ( ) определяют минимальную толщину диэлектрика. Значение d должно находиться в пределах 0,2—0,8 мкм.

  1. Определяют удельную емкость конденсатора исходя из условий электрической прочности:


4. В зависимости от требуемых значений С, и С и руковод­ствуясь рекомендациями ( ) выбирают конструкцию и форму конденсатора.

5. Определяют относительную температурную погрешность


а по ( ) — относительную погрешность обусловленную старением.

6. Используя ( ), определяют допустимую погрешность площади конденсатора при условиях


При этом

7. По конструктивно-технологическим данным на ограничение линейных размеров ( ) и выбранному значению с по­мощью ( ) определяют максимальное значение удельной емкости .

8. Выбирают минимальную удельную емкость из условия


которое обеспечивает заданное значение Up и требуемое значение 6С.

9. По заданному значению С; и полученному по ( ) значе­нию Со определяют коэффициент, учитывающий краевой эффект:


10. Определяют площадь перекрытия диэлектрика обкладка­ми конденсатора с учетом коэффициента К:


При этом, если в результате расчетов по ( ), ( ) S<0,01 см2, то необходимо выбрать другой материал диэлектри­ка с меньшим значением или увеличить его толщину d в воз­можных пределах. Если окажется, что S>2см2, то требуется выбрать другой диэлектрик с большим значением либо исполь­зовать дискретный конденсатор.


11. С учетом коэффициента определяют размеры верхней обкладки. Для обкладок квадратной формы . Полученные и округляют до значений, кратных шагу координатной сетки с учетом масштаба топологического чертежа.

12. С учетом допусков на перекрытие определяют размеры нижней обкладки


и диэлектрика


где q размер перекрытия нижней и верхней обкладок; f — размер перекрытия нижней обкладки и диэлектрика. Для конструкции рис. 1, б .

13. Определяют занимаемую конденсатором площадь

14. По выражениям ( ), ( ), ( ) и данным табл. определяют диэлектрические потери (полученное значение не должно превышать заданного), а с помощью ( ), ( ) оценивают обеспечение электрического режима и точности конденсатора в заданных условиях эксплуатации.

При проектировании группы конденсаторов расчет начинают, как правило, с конденсатора, имеющего наименьшее значение емкости. В этом случае целесообразно пользоваться программой расчета на ЭВМ.


9



ЛИТЕРАТУРА:


  1. « Детали и узлы радиоэлектронной аппаратуры », Волгов В. А., Москва, 1977 г.

  1. « Микроэлектроника» , Ефимов И. Е., Козырь И. Я., Москва, 1987 г.

  1. « Материалы электронной техники», Пасынков В. В., Сорокин В. С., Москва, 1986 г.

  1. « Расчет электрорадиоэлементов» , Печерская Р. М., г. Пенза, 1994 г.

  1. « Технология и конструирование интегральных микросхем», Березин А. С., 1983 г.

К-во Просмотров: 555
Бесплатно скачать Реферат: Расчет тонкопленочного конденсатора