Реферат: Расчет тонкопленочного конденсатора
107
6,2*10-3
Алюмоокcидная керамика типа «Поликор»
1014
10,8
2*10-4
0,075—0,08
7,5—7,8
Кварцевое стекло
1016
3,8*10-4
Ситаллы
1013—1014
6*10-3
. 5
Лейкосапфир
1011
2*10-4
Стекла представляют собой различные системы окислов. Боросиликатное стекло состоит из SiO2 (80%), В2О3 (12%) и других окислов (Na2O, K2O, Al2O3), алюмосиликатное — из SiO2 (60%), Al2O3 (20%) и других окислов (Na2O, CaO, MgO, B2O3). Стекла типов С-48-3 и С-41-1 являются бесщелочными.
Керамика — поликристаллическое вещество с зернами сложной структуры, получаемое в результате высокотемпературного отжига (спекания) порошков различных окислов. Алюмооксидная керамика типа «Поликор» состоит из Al2O3 (99,8%), B2O3 (0,1%), MgO (0,1°/о). Размер зерен — менее 40 мкм. Бериллиевая керамика содержит от 98 до 99,5% окиси бериллия ВеО.
Ситаллы — стеклокерамические материалы, получаемые в результате термообработки (кристаллизации) стекла. Большинство ситаллов характеризуется следующим составом окислов:
1) Li2O—Al2O3 —Si02 —Ti02 ; 2) RО—А12O3 — SiO2— TiO2 (RO — один из окислов СаО, MgO или ВаО).
Лейкосапфир — чистый монокристаллический окисел алюминия а-модификации.
Сравнительный анализ этих материалов позволяет сделать следующие выводы.
Стекла имеют недостаточную прочность, низкую теплопроводность, недостаточную химическую стойкость, для них характерно сильное газовыделение при нагреве. Благодаря содержанию окислов щелочных металлов возможно образование ионов этих металлов, обладающих повышенной миграцией при приложении электрического поля и обусловливающих нестабильность свойств стеклянных подложек и элементов микросхем. Повышение химической стойкости и стабильности тонкопленочных ИС обеспечивается подложками из бесщелочных стекол С-41-1 и С-48-3.
Керамика, особенно бериллиевая, имеет значительно большую теплопроводность по сравнению со стеклами. Кроме того, она обладает большей механической прочностью и лучшей химической стойкостью. Однако большие размеры зерен керамических материалов не позволяют получить удовлетворительный микрорельеф поверхности для тонкопленочных ИС. Мелкозернистая керамика с размером зерен в десятые доли микрона широко используется для подложек толстопленочных ИС. При этом наиболее удовлетворительным микрорельефом обладает керамика с 96%-ным содержанием Al2O3. Керамика с более высоким содержанием А120з, например типа «Поликор», имеет слишком гладкие поверхности, не обеспечивающие хорошей адгезии к ним толстых пленок. Полировка мелкозернистой керамики снижает микронеровности, однако вызывает существенные и трудно устранимые загрязнения ее поверхности. Поэтому такая операция не позволяет получить подложки, пригодные для тонкопленочных ИС.
Ситаллы в 2—3 раза превосходят стекла по механической прочности. Они хорошо прессуются, вытягиваются, прокатываются. Диэлектрические свойства ситаллов лучше, чем стекол, и они практически не уступают керамике.
Лейкосапфир характеризуется хорошими диэлектрическими свойствами. Однако технология его получения (обычно вытягивание монокристаллов по методу Чохральского) не позволяет получить пластины больших размеров низкой стоимости.
По совокупности диэлектрических и механических свойств, микрорельефу поверхности, стойкости к химическому воздействию наиболее приемлемыми материалами подложек для тонкопленочных микросхем 'являются ситаллы, для толстопленочных — 96%-ная алюмооксидная керамика.