Реферат: Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500
Функция от t, к которой применено преобразование Лапласа, называется оригиналом, а соответствующая функция от р - изображением. Связь между ними определяется формулами:
F(p)=òf(t)*e-pt dt f(t)=1/2*пjòF(p)*ept dt
первые пределы:[0;бесконечность]
вторыке пределы:[g-jw;l+jw]
Основная цель этих преобразований - сведение дифференциальных уравнений к чисто алгебраическим относительно комплексной частоты р. Так, при нулевых начальных условиях операция дифференцирования соответствует умножению на р-изображение, следовательно, при х0 =0 уравнения системы:
.
х = Ах + f(t) х = х0
t=t0
х(t) - вектор переменных состояния,
А - матрица размерностью n x n,
х0 - вектор начальных значений
будут иметь вид:
р Х(р) = А Х(р) - F(р)
а решение исходной системы вида:
х(t) = eAt x0 +òeA(t-s) f(S)dS, где еAt =S(At)k /k! (матричная экспонента)
будет иметь вид:
Х(р) = (рЕ - А)-1 * F(p) = K(p) F(p)
Так как выходные токи и напряжения линейным образом выражаются через переменные состояния и входные воздействия, то вектор выходных переменных z = Bx + Cf , где В, С - матрицы. Тогда матрица В(рЕ - А)-1 + С соответствует матричной передаточной функции, обозначаемой обычно К(р). Отношения любых переменных вектора неизвестных называются схемными функциями. Численный расчет или формирование аналитических выражений для схемных функций составляют основу задачи анализа линейных эквив. схем в частотной области. Согласно правилам Крамера, эти функции описываются линейной комбинацией отношений алгебраических дополнений матрицы А. Таким образом, в общем случае схемные функции есть дробно-рациональные выражения относительно комплексной частоты. Форма их представления называется символьной (буквенной), если коэффициенты при различных степенях р определены через параметры элементов схемы. Если коэффициенты получены в численном виде, то такую форму представления принято называть символьно-численной или аналитической.
К достоинствам методов определения схемных функций на ЭВМ можно отнести: получение конечного результата анализа в аналитическом виде; возможность быстрого дальнейшего расчета значений схемных функций на заданных частотах; удобство при решении задачи оптимизации и определения устойчивости схемы.
К недостаткам при решении задачи на ЭВМ можно отнести: огромный порядок (до нескольких десятков) полиномов схемных функций, диапазон изменения коэффициентов полиномов может превышать возможности представления чисел в разрядной сетке ЭВМ, что требует проведения соответствующей нормировки и счета с удвоенной точностью. Это объясняется влиянием всех элементов схемы во всем частотном диапазоне.
Вывод: используя метод оределения схемных функций, можно достичь в приемлемое время результатов для схем небольших размерностей.
Наряду с методами символьного анализа существуют методы численных решений или расчета тех же схемных функций по точкам. Целью анализа в том случае является получение набора численных значений схемных функций на заданных частотах путем многократного решения системы линейных алгебраических уравнений с комплексными коэффициентами. В процессе расчета необходимо учитывать разреженность матрицы и оптимальный порядок исключения переменных. Алгоритмы численных методов расчета схемных функций, как правило, легче реализуются на ЭВМ и требуют меньших объемов машинной памяти и используются при этом для расчета достаточно больших схем , имея при этом удовлетворительную погрешность и приемлемое время.
Численный метод.
Идея: Выбирается диапазон частот, для каждого значения частоты решают комплексное уравнение.
[Cjw1 +G]X=Y
........................
........................
........................
[Cjwn +G]X