Реферат: Развитие младших школьников в процессе обучения математике

– Каким свойством вы воспользовались при выполнении задания? (Переместительным свойством сложения).

– Подумайте: как установить, выполняется ли переместительное свойство для умножения?

Учащиеся по аналогии записывают пары произведений и находят значение каждого, заменяя произведение суммой.

Для правильного умозаключения по аналогии необходимо выделить существенные признаки объектов, в противном случае вывод может оказаться неверным. Например, некоторые учащиеся пытаются применить способ умножения числа на сумму при умножении числа на произведение. Это говорит о том, что существенное свойство данного выражения – умножение на сумму, оказалось вне их поля зрения.

Формируя у младших школьников умение выполнять умозаключения по аналогии, необходимо иметь в виду следующее:

• Аналогия основывается на сравнении, поэтому успех ее применения зависит от того, насколько ученики умеют выделять признаки объектов и устанавливать сходство и различие между ними.

• Для использования аналогии необходимо иметь два объекта, один из которых известен, второй сравнивается с ним по каким–либо признакам. Отсюда, применение приема аналогии способствует повторению изученного и систематизации знаний и умений.

• Для ориентации школьников на использование аналогии необходимо в доступной форме разъяснить им суть этого приема, обратив их внимание на то, что в математике нередко новый способ действий можно открыть по догадке, вспомнив и проанализировав известный способ действий и данное новое задание.

• Для правильных действий по аналогии сравниваются признаки объектов, существенные в данной ситуации. В противном случае вывод может быть неверным.

• Задание 88. Приведите примеры умозаключений по аналогии, которые возможно использовать при изучении алгоритмов письменного умножения и деления.

3.6. Прием обобщения

Выделение существенных признаков математических объектов, их свойств и отношений – основная характеристика такого приема умственных действий, как обобщение.

Следует различать результат и процесс обобщения. Результат фиксируется в понятиях, суждениях, правилах. Процесс же обобщения может быть организован по–разному. В зависимости от этого говорят о двух типах обобщения – теоретическом и эмпирическом.

В курсе начальной математики наиболее часто применяется эмпирический тип, при котором обобщение знания является результатом индуктивных рассуждений (умозаключений).

В переводе на русский язык «индукция» означает «наведение», поэтому, используя индуктивные умозаключения, учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.

Для получения правильного обобщения индуктивным способом необходимо:

1) продумать подбор математических объектов и последовательность вопросов для целенаправленного наблюдения и сравнения;

2) рассмотреть как можно больше частных объектов, в которых повторяется та закономерность, которую ученики должны подметить;

3) варьировать виды частных объектов, т. е. использовать предметные ситуации, схемы, таблицы, выражения, отражая в каждом виде объекта одну и ту же закономерность;

4) помогать детям словесно формулировать свои наблюдения, задавая наводящие вопросы, уточняя и корректируя те формулировки, которые они предлагают.

Рассмотрим на конкретном примере, как можно реализовать приведенные рекомендации. Для того чтобы подвести учащихся к формулировке переместительного свойства умножения, учитель предлагает им такие задания:

Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Аналогичное задание учащиеся выполняют с прямоугольником, который разбит на квадраты. В результате получают 9*3=27; 3*9=27 и словесно описывают те сходства и различия, которые существуют между записанными равенствами.

Ученикам предлагается самостоятельная работа: найти значения следующих выражений, заменив умножение сложением:

3*2 4*2 3*6 4*5 5*3 8*4 2*3 2*4 6*3 5*4 3*5 4*8

Выясняется, чем похожи и чем отличаются равенства в каждом столбике. Ответы могут быть такими: «Множители одинаковые, они переставлены», «Произведения одинаковые» или «Множители одинаковые, они переставлены, произведения одинаковые».

Учитель помогает сформулировать свойство с помощью наводящего вопроса: «Если множители переставить, то что можно сказать о произведении?»

К-во Просмотров: 782
Бесплатно скачать Реферат: Развитие младших школьников в процессе обучения математике