Реферат: Регрессионный анализ. Парная регрессия
2. Метод наименьших квадратов (МНК):
подставим в задачу формулу (2.2):
В данном случае у нас a и b – переменные, а х и у – параметры. Для нахождения экстремума функции, возьмем частные производные по a и b и приравняем их к нулю.
Получили систему из двух линейных уравнений. Разделим оба на 2n:
Из первого уравнения выразим неизвестную а:
и подставим это выражение во второе уравнение:
Построив оценки a и b коэффициентов a и b, мы можем рассчитать т. н. «предсказанные», или «смоделированные» значения ŷi = a + bxi и их вероятностные характеристики – среднее арифметическое и дисперсию.
Несложно заметить, что оказалось. Так должно быть всегда:
Кроме того, вычислим т. н. случайные остатки и рассчитаем их вероятностные характеристики.
Оказалось, . Это также закономерно:
Таким образом, дисперсия случайных остатков будет равна: