Реферат: Регрессионный анализ. Парная регрессия

2. Метод наименьших квадратов (МНК):

подставим в задачу формулу (2.2):

В данном случае у нас a и b – переменные, а х и у – параметры. Для нахождения экстремума функции, возьмем частные производные по a и b и приравняем их к нулю.

Получили систему из двух линейных уравнений. Разделим оба на 2n:

Из первого уравнения выразим неизвестную а:

и подставим это выражение во второе уравнение:

Построив оценки a и b коэффициентов a и b, мы можем рассчитать т. н. «предсказанные», или «смоделированные» значения ŷi = a + bxi и их вероятностные характеристики – среднее арифметическое и дисперсию.

Несложно заметить, что оказалось. Так должно быть всегда:

Кроме того, вычислим т. н. случайные остатки и рассчитаем их вероятностные характеристики.

Оказалось, . Это также закономерно:

Таким образом, дисперсия случайных остатков будет равна:

К-во Просмотров: 354
Бесплатно скачать Реферат: Регрессионный анализ. Парная регрессия