Реферат: Регрессионный анализ. Парная регрессия
yi ¹a + bxi + ei
Вопрос: почему бы нам не взять g поменьше? Чем меньше g, тем больше соответствующее табличное значение F-статистики, т. е., тем меньше шансов, что появятся основания отвергнуть гипотезу Н0 .
Ошибки первого и второго рода
Ошибка первого рода: отвергается Н0 , которая на самом деле верна.
Ошибка второго рода: принимается H0, которая на самом деле не верна.
Очевидно, чем меньше g, тем меньше наши шансы отвергнуть гипотезу Н0 , т. е., совершить ошибку первого рода. Соответственно, шансы совершить ошибку второго рода увеличиваются.
4. Характеристика оценок коэффициентов уравнения регрессии
1) математическое ожидание
Теорема: М(а) = a, M(b) = b - несмещенность оценок
Это означает, что при увеличении количества наблюдений значения МНК-оценок a и b будут приближаться к истинным значениям a и b;
2) дисперсия
Теорема:
;
Благодаря этой теореме, мы можем получить представление о том, как далеко, в среднем, наши оценки a и b находятся от истинных значений a и b.
Необходимо иметь в виду, что дисперсии характеризуют не отклонения, а «отклонения в квадрате». Чтобы перейти к сопоставимым значениям, рассчитаем стандартные отклонения a и b:
;
Будем называть эти величины стандартными ошибками a и b соответственно.
5. Построение доверительных интервалов
Пусть мы имеем оценку а. Реальное значение коэффициента уравнения регрессии a лежит где-то рядом, но где точно, мы узнать не можем. Однако, мы можем построить интервал, в который это реальное значение попадет с некоторой вероятностью. Доказано, что:
с вероятностью Р = 1 - g
где tg /2 (n-1) - g/2-процентная точка распределения Стьюдента с (n-1) степенями свободы – определяется из специальных таблиц.
При этом уровень значимостиg устанавливается произвольно.
Неравенство можно преобразовать следующим образом:
,
или, что то же самое:
Аналогично, с вероятностью Р = 1 - g: