Реферат: Регрессионный анализ. Парная регрессия
,
или:
Уровень значимости g - это вероятность того, что на самом деле истинные значения a и b лежат за пределами построенных доверительных интервалов. Чем меньше его значение, тем больше величина tg /2 (n-1), соответственно, тем шире будет доверительный интервал.
6. Проверка статистической значимости коэффициентов регрессии
Мы получили МНК-оценки коэффициентов, рассчитали для них доверительные интервалы. Однако мы не можем судить, не слишком ли широки эти интервалы, можно ли вообще говорить о значимости коэффициентов регрессии.
Гипотеза Н0 : предположим, что a=0, т. е. на самом деле независимой постоянной составляющей в отклике нет (альтернатива – гипотеза Н1 : a¹ 0).
Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика, для парной регрессии:
Значение t-статистики сравнивается с табличным значением tg /2 (n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы.
Если |t| < tg /2 (n-1) – гипотеза Н0 не отвергается (обратить внимание: не «верна», а «не отвергается»), т. е. мы считаем, что с вероятностью 1-g можно утверждать, что a = 0.
В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1 .
Аналогично для коэффициента b формулируем гипотезу Н0 : b = 0, т. е. переменная, выбранная нами в качестве фактора, на самом деле никакого влияния на отклик не оказывае.
Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика:
и сравнивается с табличным значением tg /2 (n-1).
Если |t| < tg /2 (n-1) – гипотеза Н0 не отвергается, т. е. мы считаем, что с вероятностью 1-g можно утверждать, что b = 0.
В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1 .
7. Автокорреляция остатков.
1. Примеры автокорреляции.
Возможные причины:
1) неверно выбрана функция регрессии;
2) имеется неучтенная объясняющая переменная (переменные)
2. Статистика Дарбина-Уотсона
Очевидно:
0 £ DW £ 4
Если DW близко к нулю, это позволяет предполагать наличие положительной автокорреляции, если близко к 4 – отрицательной.
Распределение DW зависит от наблюденных значений, поэтому получить однозначный критерий, при выполнении которого DW считается «хорошим», а при невыполнении - «плохим», нельзя. Однако, для различных величин n и g найдены верхние и нижние границы, DWL и DWU , которые в ряде случаев позволяют с уверенностью судить о наличии (отсутствии) автокорреляции в модели. Правило: