Реферат: Счётные множества
Обозначим через Ai множество тех элементов А, для которых , где одно из возможных значений (m+1)-го значка, т. е. положим Ai =={a,, . . . ,, }.
В силу сделанного допущения множество Ai счётно, а так как А=, то счётно и множество А.
Вот несколько предложений, вытекающих из этой теоремы:
Множество точек (x, y) плоскости, у которых обе координаты рациональны, счётно.
Но более интересным является следующий факт:
Множество многочленов с целыми коэффициентами счётно.
В самом деле, это непосредственно следует из теоремы 11, если только рассматривать многочлены фиксированной степени n, и для завершения доказательства следует применить теорему 8.
Список литературы
1.Александров П.С. Введение в общую теорию множеств и функций. – Ленинград, 1948.
Никольский С.М. Курс математического анализа. – Москва, 1983.
Кудрявцев Л.Д. Математический анализ (том 1). – Москва, 1973.
Архангельский А. В. Канторовская теория множеств. – Москва, 1988.
Куратовский К. и Мастовский А. Теория множеств. – Москва, 1970.
Медведев Ф.А. Развитие теории множеств в 19 веке. – Москва, 1965.