Реферат: Шпоры по эконометрике
Стандартная ошибка параметра а :
Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции т r :
Общая дисперсия признака х:
Коэф. регрессии Его величина показывает ср. изменение результата с изменением фактора на 1 ед.
Ошибка аппроксимации:
№ 5. ИНТЕРВАЛЫ ПРОГНОЗА ПО ЛИНЕЙНОМУ УРАВНЕНИЮ
РЕГРЕССИИ
Оценка стат. значимости параметров регрессии проводится с помощью t – статистики Стьюдента и путем расчета доверительного интервала для каждого из показателей. Выдвигается гипотеза Н0 о статистически значимом отличие показателей от 0 a = b = r = 0. Рассчитываются стандартные ошибки параметров a,b, r и фактич. знач. t – критерия Стьюдента.
Определяется стат. значимость параметров.
ta ›Tтабл - a стат. значим
tb ›Tтабл - b стат. значим
Находятся границы доверительных интервалов.
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что параметры a и b находясь в указанных границах не принимают нулевых значений, т.е. не явл.. стат. незначимыми и существенно отличается от 0.
№ 6. НЕЛИНЕЙНАЯ РЕГРЕССИЯ. ВИДЫ МОДЕЛЕЙ
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы , параболы второй степени и д.р.
Различают два класса нелинейных регрессий:
• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;
• регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:
• полиномы разных степеней
• равносторонняя гипербола
К нелинейным регрессиям по оцениваемым параметрам относятся функции: