Реферат: Шпоры по эконометрике

№11. МНОЖЕСТВЕННАЯ РЕГРЕССИЯ. СПЕЦИФИКАЦИЯ МОДЕЛИ. ОТБОР ФАКТОРОВ ПРИ ПОСТРОЕНИИИ МОДЕЛИ.

Регрессия может дать хороший результат при модели­ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи­ческих переменных контролировать нельзя, т. е. не удается обес­печить равенство всех прочих условий для оценки влияния одно­го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост­роить уравнение множественной регрессии: y = a + b 1 x 1 + b 2 +…+ bp xp + e ; Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты bj — частные производные потребления у по соответствующим факторам xi : , в предположении, что все остальные хi постоянны. В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неод­нократно обращались к проблеме ее совершенствования. Совре­менная потребительская функция чаще всего рассматривается как модель вида: C = j ( y , P , M , Z ), где С — потребление; у — доход; Р — цена, индекс стоимости жизни; М — наличные деньги; Z — ликвидные активы. При этом .. Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии. Требования к факторам.1 Они должны быть количественно измеримы. Если необхо­димо включить в модель качественный фактор, не имеющий ко­личественного измерения, то ему нужно придать количествен­ную определенность (например, в модели урожайности качество почвы задается в виде баллов) 2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией, когда Ryx 1 Rx 1 x 2 .Для зависимости y = a + b 1 x 1 + b 2 +…+ bp xp + e может привести к нежелательным последствиям, повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются не интерпретированными.

Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором р- факторов, то для нее рассчитывается показа­тель детерминации R 2 , который фиксирует долю объясненной ва­риации результативного признака за счет рассматриваемых в ре­грессии р- факторов. Влияние других не учтенных в модели фак­торов оценивается как 1 - R 2 с соответствующей остаточной дис­персией S2 . При дополнительном включении в регрессию (р + 1) фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:. Насыщение модели лишними факторами не только не снижа­ет величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по t-критерию Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качест­венного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подби­раются факторы исходя из сущности проблемы; на второй – на основе показателей корреляции определяют t-статистики для параметров регрессии. Коэффициенты интеркорреляции (т. е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменных явно кол линеарны, т. е. находятся между собой в линейной зависимости, если . Ес­ли факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочте­ние при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множест­венной регрессии как метода исследования комплексного воз­действия факторов в условиях их независимости друг от друга. Наибольшие труд­ности в использовании аппарата множественной регрессии воз­никают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимос­тью. Наличие мультиколлинеарности факторов может озна­чать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полно­стью независимой, и нельзя оценить воздействие каждого факто­ра в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК). Включение в модель мультиколлинеарных факторов нежела­тельно в силу следующих последствий: 1.затрудняется интерпретация параметров множественной ре­грессии как характеристик действия факторов в «чистом» ви­де, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;2оценки параметров ненадежны, обнаруживают большие стан­дартные ошибки и меняются с изменением объема наблюде­ний. Для оценки мультиколлинеарности факторов может исполь­зоваться определитель матрицы парных коэффициентов корреля­ ции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей. Для включающего три объ­ясняющих переменных уравнения: y = a + b 1 x 1 + b 2 + b 3 x 3 + e . Матрица коэф-в корреляции м/у факторами имела бы определитель равный 1. Det =1, т.к. rx 1 x 1 =rx 2 x 2 =1 и rx 1 x 2 =rx 1 x 3 =rx 2 x 3 =0. Если м/у факторами сущ-ет полная линейная зависимость и все коэф-ты корреляции =1, то определитель такой матрицы =0. Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной кор­реляции, тем меньше мультиколлинеарность факторов.

№12. ЧТО ОЗНОЧАЕТ ВЗАИМОДЕЙСТВИЕ ФАКТОРОВ И КАК ОНО МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНО ГРАФИЧЕСКИ?

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т. е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если y=f(x1,x2,x3), то возможно пост­роение следующего совмещенного уравнения: y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e . Рассматриваемое уравнение включает взаимодействие перво­го порядка (взаимодействие двух факторов). Возможно включе­ние в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по F-критерию Фи­шера. Если анализ совмещенного уравнения показал значи­мость только взаимодействия факторов х1 и х3 ,то уравнение бу­дет иметь вид: y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e . Взаимодействие факторов х1 и х3 означает, что на разных уровнях фактора х3 влияние фактора х1 на у будет неодинаково, т. е. оно зависит от значений фактора х3 . На рис. взаимодейст­вие факторов представляется непараллельными линиями связи с результатом у. И, наоборот, параллельные линии влияния факто­ра x1 на у при разных уровнях фактора х3 означают отсутствие вза­имодействия факторов х1 и х3 . Графики:

а х1 влияет на у, причем это влияние одинаково как при х31 , так и при х32 (одинаковый наклон линий регрессии), что означает отсутствие взаи­модействия факторов х1 и х3 ; б — с ростом х1 результативный признак y возрастает при х3 = В1 ; с ростом х1 результативный признак у снижается при х3 = В2 .. Между х1 и х3 существу­ет взаимодей-вие. Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений.Решению проблемы устранения мультиколлинеарности фак­торов может помочь и переход к уравнениям приведенной фор­мы. С этой целью в уравнение регрессии производится подста­новка рассматриваемого фактора через выражение его из другого уравнения.

№13. ИНТЕРПРИТАЦИЯ КОЭФФИЦИЕНТОВ РЕГРЕССИИ ЛИНЕЙНОЙ МОДЕЛИ ПОТРЕБЛЕНИЯ. СМЫСЛ СУММЫ bi В ПРОИЗВОДСТВЕННЫХ ФУНКЦИЯХ И ЗНАЧЕНИЕ СУММЫ bi >1 . КОЭФФИЦИЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОЦЕНКИ СРАВНИТЕЛЬНОЙ СИЛЫ ВОЗДЕЙСТВИЯ ФАКТОРОВ НА РЕЗУЛЬТАТ.

Функция потребления: С=К*у+L, где С-потребление, у-доход, К и L-параметры функции.(у=С+I, I-размер инвистиций). Предположим, что функция потребления составила :С= 1,9 + 0,65 *у . Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи дохода на потреб­ление расходуется в среднем 650 руб., а 350 руб. инвестируются. В производственных функциях:

где Р - количество продукта, изготавливаемого с помощью т производст­венных факторов (F1 , F 2 ,..., Fm ); b - параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.

Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т. е. сумма эластичностей: В= b 1 + b 2 +...+ Ьт . Эта величина фиксирует обобщенную харак­теристику эластичности производства.

При практических расчетах не всегда .Она может быть как больше, так и меньше единицы. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с рос­том каждого фактора производства на 1 % в условиях увеличива­ющейся > 1) или уменьшающейся < 1) отдачи на масштаб. Так, если Р = 2,4* F * F2 0,7 * F3 0,2 , то с ростом значений каж­дого фактора производства на 1 % выпуск продукции в целом возрастает приблизительно на 1,2 %.

№14. НАЗНАЧЕНИЕ ЧАСТНОЙ КОРРЕЛЯЦИИ ПРИ ПОСТРОЕНИИ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. Ранжирование факторов, участву­ющих во множественной линейной регрессии, может быть прове­дено через стандартизованные коэффициенты регрессии, с помо­щью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включе­ния того или иного фактора в модель доказывается величиной показателя частной корреляции.

Частные коэффициенты (или индексы) корреляции характери­зуют тесноту связи между результатом и соответствующим фак­тором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отно­шение сокращения остаточной дисперсии за счет дополнитель­ного включения в анализ нового фактора к остаточной диспер­сии, имевшей место до введения его в модель.

К-во Просмотров: 967
Бесплатно скачать Реферат: Шпоры по эконометрике