Реферат: Случайные процессы в статической динамике
Начальные моменты
Начальные моменты характеризуют отклонение случайной величины относительно начала отсчета
, (1.12)
где f(x) –плотность вероятности случайной величины X.
При к = 1
. (1.13)
Математическим ожиданием случайной величины mx называется начальный момент первого порядка a1, который характеризует среднее значение случайной величины.
Для дискретных, случайных величин
, (1.14)
где xi и pi - возможные значения случайных величин и их вероятности.
Для любой функции случайного аргумента математическое ожидание равно
. (1.15)
Для функции двух случайных аргументов математическое ожидание равно
. (1.16)
При к = 2
. (1.17)
Средним квадратом случайной величины называется начальный момент второго порядка -a2, который характеризует среднюю мощность случайной величины.
Центральные моменты
Центральные моменты характеризуют отклонение случайной величины относительно среднего значения.
. (1.18)
называется центрированной величиной.
При к = 1
. (1.19)
При к = 2
. (1.20)
Дисперсией случайной величины Dx называется центральный момент второго порядка -m1, который характеризует степень рассеивания случайной величины относительно среднего значения.
Величина называется средним квадратичным отклонением.
Между моментами существует следующая связь:
. (1.21)