Реферат: Статистическая обработка экспериментальных данных

Рассчитываем E:

; (12)

;


Согласно критерию 2 результаты наблюдений принадлежат нормальному закону распределения, если не более m разностей превысили E. Из таблицы 4 видно, что ни одна разность не превышает E = 3,4566. Следовательно, гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными.

Соблюдаются оба критерия, значит закон можно признать нормальным с вероятностью , .

4. Определяем стандартное отклонение среднего арифметического.

Так как закон распределения вероятности результата измерений признан нормальным, то стандартное отклонение определяем как:

(13)

5. Определяем доверительный интервал.

Закон распределения вероятности результата измерений признан нормальным, поэтому доверительный интервал для заданной доверительной вероятности P определяется из распределения Стьюдента.

P = 0,98; ; t = 2,33;

; (14)

Значение Q будет находиться в пределах:


3. Обработка результатов нескольких серий измерений


Условие. При многократных измерениях одной и той же величины получены две серии по 12 (nj) результатов измерений в каждой. Эти результаты после внесения поправок представлены в таблице 5. Вычислить результат многократных измерений.

Исходные данные:

Таблица 5

Серия 1 Серия 2
№ изме-рения Результат измерения № изме-рения Результат измерения № изме-рения Результат измерения № изме-рения Результат измерения
1 482 7 483 1 483 7 483
2 485 8 483 2 483 8 482
3 486 9 481 3 483 9 481
4 486 10 480 4 483 10 481
5 483 11 492 5 484 11 483
6 483 12 486 6 484 12 495

Расчет.

1. Обрабатываем экспериментальные данные по алгоритму, изложенному в п.п. 1–3 задания 2, при этом:

– определяем оценки результата измерения и среднеквадратического отклонения ;

– обнаруживаем и исключаем ошибки;

– проверяем гипотезу о нормальности распределения оставшихся результатов измерений.

(15)


(16)

Таблица 6

Серия 1 Серия 2
№ из-мерения

К-во Просмотров: 690
Бесплатно скачать Реферат: Статистическая обработка экспериментальных данных