Реферат: Статистическое изучение динамики социально-экономических явлений
первого и второго рядов динамики (соответственно).
Коэффициенты опережения (отставания) могут быть исчислены на основе сравнения средних темпов роста (или прироста) двух динамических рядов за одинаковый период времени:
где , - средние темпы роста первого и второго рядов динамики соответственно; п — число лет в периоде.
Коэффициент опережения (отставания) показывает, во сколько раз быстрее растет (отстает) уровень одного ряда динамики по сравнению с другим. При этом сравнении темпы должны характеризовать тенденцию одного направления.
Методы анализа основной тенденции развития в рядах динамики
Важной задачей статистики является определение в рядах динамики общей тенденции развития явления.
Иногда закономерность изменения явления, общая тенденция его развития отчетливо отражается уровнями динамического ряда (уровни на изучаемом периоде непрерывно растут или непрерывно снижаются).
Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда постоянно изменяются (то возрастают, то убывают), и общая тенденция неясна.
На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.
Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции.
Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.
Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания.
Одним из наиболее простых методов изучения основной тенденции в рядах динамики являетсяукрупнение интервалов. Он основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Например, ряд ежесуточного выпуска продукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.
Выявление основной тенденции может осуществляться такжеметодом скользящей (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т.д.), первых по счету уровней ряда, затем — из такого же числа уровней, но начиная со второго по счету, далее — начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, передвигаясь на один срок.
Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следовательно, потеря информации.
Рассмотренные приемы дают возможность определить общую тенденцию развития явления, более или менее освобожденную от случайных и волнообразных колебаний. Однако получить обобщенную статистическую модель тренда нельзя.
Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики.
Основным содержаниемметода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени:
где— уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t .
Определение теоретических (расчетных) уровней производится на основе адекватной математической модели, которая отображает (аппроксимирует) основную тенденцию ряда динамики.
Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).
Простейшими моделями (формулами), выражающими тенденцию развития, являются:
линейная функция — прямая = а0 + a1 t,
где а0 и а1 — параметры уравнения;
t— время;
показательная функция- ,
степенная функция — кривая второго порядка (парабола)