Реферат: Статистическое изучение динамики социально-экономических явлений

В тех случаях, когда требуется особо точное изучение тен­денции развития (например, модели тренда для прогнозирова­ния), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.

Расчет параметров функции производится методом наименьших квадратов, в котором в качестве решения принима­ется точка минимума суммы квадратов отклонений между тео­ретическими и эмпиричесими уровнями:

где - выравненные (расчетные) уровни; уi - фактические уровни. Параметры уравнения аi удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней уi изменяю­щимися уровнями, наилучшим образом аппроксимирующи­ми статистические данные.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически посто­янны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометриче­ской прогрессии, т. е. когда цепные коэффициенты рос­та практически постоянны.

Рассмотрим «технику» выравнивания ряда динамики по пря­мой:

= а0 + a1 t,

Параметры а0 и а1 согласно методу наимень­ших квадратов находятся решением следующей системы нор­мальных уравнений, полученной путем алгебраического преобра­зования условия:

где у — фактические (эмпирические) уровни ряда; t время (по­рядковый номер периода или момента времени).

Расчет параметров упрощается, если за начало отсчета времени (t = 0) принять центральный интервал (момент).

При четном числе уровней (например, 4), значения t — ус­ловного обозначения времени будут такими (это равнозначно из­мерению времени не в годах, а в полугодиях):.

1996г. 1997г. 1998г. 1999г.

-3 -1 +1 +3

При нечетном числе уровней (например, 5) значения уста­навливаются по-другому:

1996 г 1997г. 1998г. 1999г. 2000г.

-2 -1 0 +1 +2

В обоих случаях Σ t = 0, так что система нормальных урав­нений принимает вид:

Из первого уравнения

Из второго уравнения

Методы изучения сезонных колебаний

При сравнении квартальных и месячных данных многих социаль­но-экономических явлений часто обнаруживаются периодические ко­лебания, возникающие под влиянием смены времен года. Они явля­ются результатом влияния природно-климатических условий, общих экономических факторов, а также многочисленных и разнообразных факторов, которые часто являются регулируемыми.

K сезонным относят все явления, кото­рые обнаруживают в своем развитии отчетливо выраженную зако­номерность внутригодовых изменений, т. е. более или менее ус­тойчиво повторяющиеся из года в год колебания уровней.

В статистике периодические колебания, которые имеют опре­деленный и постоянный период, равный годовому промежутку, носят название «сезонные колебания» или «сезонные волны», а дина­мический ряд в этом случае называют сезонным рядом динамики.

Значительной колеблемости во внутригодовой динамике подвержены денежное обращение и товарооборот. Сезонные колебания отрицательно влияют на ре­зультаты производственной деятельности, вызывая нарушения ритмичности производства.

Комплексное регулирование сезонных изменений должно основываться на исследова­нии сезонных колебаний.

Cуществует ряд методов изучения и измерения се­зонных колебаний. Самый простой заключается в построении специ­альных показателей, которые называются индексами сезонности Is Совокупность этих показателей отражает сезонную волну.

Индексами сезонности являются процентные отношения факти­ческих (эмпирических) внутригрупповых уровней к теоретическим (расчетным) уровням, выступающим в качестве базы сравнения.

К-во Просмотров: 426
Бесплатно скачать Реферат: Статистическое изучение динамики социально-экономических явлений