Реферат: Стаціонарні та рівномірно-обертові конфігурації точкових вихорів
Дисертація присвячена знаходженню стаціонарних та рівномірно-обертових конфігурацій точкових вихорів однакової інтенсивності в ідеальній нестисливій рідині на необмеженій площині.
В роботі представлено новий метод знаходження рівномірно-обертових конфігурацій систем точкових вихорів однакової інтенсивності . Метод базується на розв’язанні нелінійної алгебраїчної системи рівнянь руху точкових вихорів. Представлений метод дозволяє визначити як стійкі, так і нестійкі конфігурації точкових вихорів на площині.
Побудовано каталог симетричних конфігурацій точкових вихорів при . Класифіковано отримані вихрові структури на правильні, полігональні та розміщені по концентричних колах Проведено порівняльний аналіз з класами рівномірно-обертових конфігурацій точкових вихорів, наведеними в літературі.
За допомогою запропонованого методу знайдено ряд несиметричних вихрових структур. Побудовано каталог несиметричних конфігурацій при . Більшість з представлених несиметричних вихрових структур являються новими. Наведено всі точні початкові координати вихорів в декартовій системі координат як для симетричних, так і для несиметричних рівномірно-обертових вихрових структур.
Побудовано траєкторії руху всіх отриманих конфігурацій точкових вихорів без початкового збурення та з малим збуренням початкових координат. Інтегрування проводилось за допомогою методу Рунге-Кутта.
Проведено чисельний аналіз стійкості всіх представлених рівномірно-обертових конфігурацій точкових вихорів. Показано, що всі симетричні конфігурації вихорів, представлені на рис.4, являються стійкими відносно малих збурень початкових координат. Всі несиметричні конфігурації (рис.5 та рис.6), являються нестійкими відносно малих збурень початкових координат.
Ключові слова: точковий вихор, стаціонарні та рівномірно-обертові конфігурації, інтенсивність, метод Рунге-Кутта, траєкторії руху, стійкість, збурення початкових координат.
АННОТАЦИЯ
Губа А.А. Стационарные и равномерно-вращательные конфигурации точечных вихрей. – Рукопись.
Диссертация на соискание научной степени кандидата физико-математических наук по специальности 01.02.05 – механика жидкости, газа и плазмы, Киевский национальный университет имени Тараса Шевченка, Киев, 2008.
Диссертация посвящена нахождению стационарных и равномерно-вращательных конфигураций точечных вихрей равной интенсивности в идеальной несжимаемой жидкости на неограниченной плоскости.
В работе представлено новый метод нахождения равномерно-вращательных конфигураций систем точечных вихрей одинаковой интенсивности, который основан на решении нелинейной алгебраической системы уравнений движения точечных вихрей. В качестве начального приближения выбирается стационарная точка потока жидкости. В эту стационарную точку помещается точечный вихрь, интенсивность которого, по мере проведения итераций, постепенно увеличивается от нуля до интенсивности остальных вихрей конфигурации. На каждом итерационном шаге решается нелинейная система алгебраических уравнений порядка , в результате определ