Реферат: Теореми про диференціальні функції

Знайдемо

Виберемо α так, щоб для заданого ε справджувалась нерівність (5) і при х ® а виконувались співвідношення: f ( x ) ® ¥ і φ ( x ) ® ¥. Тоді

або

. (6)

Перемножимо почленно (5) і (6):

. (7)

Вибираючи значення ε достатньо малим і переходячи в останній нерівності до границі при х ® а , дістаємо (4).

Аналогічно розглядається випадок, коли х ® ¥.

Якщо f ( x ) і φ ( x ) неперервно диференційовані на півпрямій с < х < ¥ (–¥ < х < с ) φ¢(х ) ¹ 0, причому існує , то існує і :

(8)

Границя відношення нескінченно великих величин дорівнює відношенню їх похідних у разі існування останніх.

- Приклад

L Зауваження. У формулах (4), (8) з існуванням границь відношення похідних випливає існування відношення функцій. Обернене твердження не буде правильним.

- Приклад. Обчислити

Згідно з правилом Лопіталя маємо:

Отже, границя даної функції не існує, оскільки не існує .

Але

L Зауваження. Правило Лопіталя є ефективним методом розкриття невизначеностей. Проте застосування його не завжди дає змогу спростити здобутий вираз і знайти шуканий результат.

- Приклад. Знайти .

Якщо застосувати правило Лопіталя вдруге, то функція під знаком границі набере початкового вигляду. Таким чином, за цим правилом не вдається розкрити невизначеність.

Але

ВИСНОВОК:

Невизначеності виду можна розкривати за правилом Лопіталя (1),(4),(8).

Застосування правила Лопіталя для розкриття невизначеностей виду

І. Невизначеність виду

за допомогою перетворень зводиться до невизначеностей або , а далі застосовується правило Лопіталя.

Знайти границю , якщо .

- Приклад. Знайти: .

.

- Приклад. Знайти .

.

При х ® + ¥ степенева функція зростає повільніше, ніж будь–яка інша показникова функція.

ІІ. Невизначеність

за допомогою перетворень зводиться до невизначеності виду

К-во Просмотров: 202
Бесплатно скачать Реферат: Теореми про диференціальні функції