Реферат: Тождественные преобразования показательной и логарифмической функций
Степени с дробными показателями и простейшие правила действий над ними встречаются у французского математика Н. Оресма (1328-1382). Впрочем, уже у Архимеда есть упоминание об отношении, взятом в степени 3\2. Живший в XV веке французский ученый Шюке рассматривал степени с отрицательным и нулевым показателями.
Логарифмы были введены независимо друг от друга двумя учеными – английским математиком Д.Непером (1550-1617) и швейцарцем И. Бюрги (1552-1632). Непер развил теорию логарифмов, указал способы их вычисления и составил подробные таблицы логарифмов. Логарифмы Непера были близки к современным натуральным логарифмам. Десятичные логарифмы были введены английским математиком Г.Бриггом (1561-1630). Появление логарифмов значительно упростило вычисления, и в течение длительного времени логарифмы были основным средством вычислений. Французский математик Лаплас говорил, что изобретение логарифмов удлинило жизнь вычислителей.
Создатели логарифмов вычисляли их с помощью различных частных приёмов. Общие способы вычисления, основанные на теории бесконечных рядов, восходят к немецкому учёному Меркатору (1620-1687), который установил также связь между логарифмами и вычислением площади, ограниченной осью абсцисс, прямыми и
кривой
.
Свойства логарифмов впервые были точно сформулированы английским математиком Оутредом в 1648 году. Однако ещё в первой половине XVIII века логарифмирование не причислялось к алгебраическим действиям. Лишь Эйлер в книге «Введение в анализ бесконечно малых» (1748 г.) определил логарифмирование как второе алгебраическое действие, обратное возведению в степень, и, значит, логарифм как некоторый показатель степени. Лейбниц ещё в конце XVII века применял правила логарифмирования для решения показательных уравнений.
Логарифмическая спираль
Самолет, вылетевший из какой-нибудь точки земного шара на север, через некоторое время окажется над Северным полюсом. Если же он полетит на восток, то, облетев параллель, вернется в тот же пункт, из которого вылетел. Предположим теперь, что самолет будет лететь пересекая все меридианы под одним и тем же углом, отличным от прямого, т. е. держась все время одного и того же курса. Когда он облетит земной шар, то попадет в точку, имеющую ту же долготу, что и точка вылета, но расположенную ближе к Северному полюсу. После следующего облета он окажется еще ближе к полюсу и, продолжая лететь указанным образом, будет описывать вокруг полюса сужающуюся спираль.
Уравнение этой спирали r = , где r – расстояние от произвольной точки М на спирали до выбранной точки О,
- угол между лучом ОМ и выбранным лучом Ох, а и k - постоянные. Решая его, получим
lnekφ = ln
kφ = ln
φ =
ln
Так как это уравнение связано с логарифмической функцией, то вычисленную по этой формуле спираль называют логарифмической.
§2.Формирование навыков применения
конкретных видов преобра зований
Система приемов и правил проведения преобразований имеет очень широкую область приложений: она используется в изучении всего курса математики. Однако именно в силу своей малой специфичности эта система нуждается в дополнительных преобразованиях, учитывающих особенности структуры преобразуемых выражений и свойства вновь вводимых операций и функций. Освоение соответствующих видов преобразований начинается с введения формул сокращенного умножения. Затем рассматриваются преобразования, связанные с операцией возведения в степень, с различными классами элементарных функций – показательных, степенных, логарифмических, тригонометрических. Каждый из этих типов преобразований проходит этап изучения, на котором внимание сосредоточивается на усвоении их характерных особенностей.
По мере накопления материала появляется возможность выделить и общие черты всех рассматриваемых преобразований и на этой основе ввести понятия тождественного и равносильного преобразований.
Следует обратить внимание на то, что понятие тождественного преобразования дается в школьном курсе алгебры не в полной общности, а только в применении к выражениям. Преобразования разделяются на два класса: тождественные преобразования – это преобразования выражений, и равносильные – преобразования формул. В случае, когда возникает потребность в упрощении одной части формулы, в этой формуле выделяется выражение, которое и служит аргументом применяемого тождественного преобразования.
Что касается организации целостной системы преобразований (синтез) , то основная её цель состоит в формировании гибкого и мощного аппарата, пригодного для использования в решении разнообразных учебных заданий.
В курсе алгебры и начал анализа целостная система преобразований, в основных чертах уже сформированная, продолжает постепенно совершенствоваться. К ней также добавляются некоторые новые виды преобразований, однако они только обогащают ее, расширяют ее возможности, но не меняют ее структуру. Методика изучения этих новых преобразований практически не отличается от применяемой в курсе алгебры.
§3. Особенности организации системы заданий
при изучении тождественных преобразований
Основной принцип организации любой системы заданий – переход от простого к сложному, с учетом необходимости преодоления учениками посильных трудностей и создания проблемных ситуаций. Указанный основной принцип требует конкретизации применительно к особенностям данного учебного материала. Для описания различных систем заданий в методике математики используется понятие цикла упражнений. Цикл упражнений характеризуется соединением в последовательности упражнений нескольких аспектов изучения и приемов расположения материала. По отношению к тождественным преобразованиям представление о цикле может быть дано следующим образом.
Цикл упражнений связан с изучением одного тождества, вокруг которого группируются другие тождества, находящиеся с ним в естественной связи. В состав цикла наряду с исполнительными входят задания, требующие распознавания применимости рассматриваемого тождества. Изучаемое тождество применяется для проведения вычислений на различных числовых областях. Учитывается специфика тождества; в частности, организуются связанные с ним обороты речи.
Задания в каждом цикле разбиты на две группы. К первой относятся задания, выполняемые при первоначальном знакомстве с тождеством. Они служат учебным материалом для нескольких идущих подряд уроков, объединенных одной темой. Вторая группа упражнений связывает изучаемое тождество с различными приложениями. Эта группа не образует композиционного единства – упражнения здесь разбросаны по различным темам.
Описанная структура цикла относится к этапу формирования навыков применения конкретных видов преобразований. На заключительном этапе – этапе синтеза циклы видоизменяются. Во-первых, объединяются обе группы заданий, образующие «развернутый» цикл, причем из первой группы исключаются наиболее простые по формулировкам или по сложности выполнения задания. Оставшиеся типы заданий усложняются. Во-вторых, происходит слияние циклов, относящихся к различным тождествам, в силу чего повышается роль действий по распознаванию применимости того или иного тождества.
Отметим особенности циклов заданий, связанных с тождествами для элементарных функций. Эти особенности обусловлены тем, что, во-первых, соответствующие тождества изучаются в связи с изучением функционального материала и, во-вторых, они появляются позже тождеств первой группы и изучаются с использованием уже сформированных навыков проведения тождественных преобразований.
Каждая вновь вводимая элементарная функция резко расширяет область чисел, которые могут быть обозначены и названы индивидуально. Поэтому в первую группу заданий циклов должны войти задания на установление связи этих новых числовых областей с исходной областью рациональных чисел. Приведем примеры таких заданий.
Пример 1 . Вычислить:
1) , если
;
2) , если
;
3) ,если
.
Рядом с каждым выражением указано тождество, в циклах по которым могут присутствовать предлагаемые задания. Цель таких заданий – в освоении особенностей записей, включающих символы новых операций и функций, и в развитии навыков математической речи.
Значительная часть использования тождественных преобразований, связанных с элементарными функциями, приходится на решение иррациональных и трансцендентных уравнений. В циклы, относящиеся к усвоению тождеств, входят только наиболее простые уравнения, но уже здесь целесообразно проводить работу по усвоению приема решения таких уравнений: сведение его путем замены неизвестного к алгебраическому уравнению.
Последовательность шагов при этом способе решения такова:
1) найти функцию , для которой данное уравнение
представимо в виде
;