Реферат: Тождественные преобразования показательной и логарифмической функций

Формулу (где , и ) называют основным логарифмическим тождеством .

При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом ( ) и любых положительных и выполнены равенства:

1.

2.

3.

4.

5. для любого действительного .

Основные свойства логарифмов широко применяются в ходе преобразования выражений, содержащих логарифмы. Например, часто используется формула перехода от одного основания логарифма к другому: .

Перейдём к определению логарифмической функции

Пусть – положительное число, не равное 1.

Это функция вида

-Число называется основанием логарифма. Обратим внимание читателя на то, что с точностью до поворотов и симметричных отражений на последних четырёх чертежах изображена одна и та же линия. Область определения логарифмической функции – промежуток (0; +¥).

-Область значения логарифмической функции – вся числовая прчмая.

-Логарифмическая функция непрерывна и дифференцируема во всей области определения. Производная логарифмической функции вычисляется по формуле

( loga x ) ¢ =

-Логарифмическая функция монотонно возрастает, если а >1. При 0<a <1

-Логарифмическая функция с основанием а монотонно убывает.

-При любом основании a >0, a ¹1, имеют место равенства

loga 1 = 0, loga a =1.

-При а >1 график логарифмической функции – кривая, направленная вогнутостью вниз; при 0<a <1 – кривая, направленная вогнутостью вверх.

при график имеет такой вид:

При график получается такой:

Глава 3.

Тождественные преобразования показательных и

логарифмических выражений на практике.

Задание 1.

Вычислите:


1) ;

2) ;

3) ;

4) ;

5)

Решение:

1) Используя свойство степени, получим:

;

Ответ: 27

2) ;

Ответ: 9

2) Применяя свойства логарифмов и степени:

3) ;

Ответ: 24

К-во Просмотров: 329
Бесплатно скачать Реферат: Тождественные преобразования показательной и логарифмической функций