Реферат: Центральная Предельная Теорема и её приложения. Решение Определенного интеграла методом Монте-Карло
Рис.3. Распределение вероятностей дискретного равномерного распределения (n=6).
Случайная величина, принимающая два значения: 0 и 1 с вероятностями q=1-р и р, соответственно (0<р<1), называется случайной величиной, распределенной по закону Бернулли с параметром p. Случайная величина, распределенная по закону Бернулли - это удачная модель для описания многих конкретных испытаний, имеющих два исхода (наиболее известный пример - бросание правильной монеты; здесь p=q=1/2), в том числе и в биологии: присутствие или отсутствие некоторого признака: пол родившегося цыпленка, цвет цветка и т. д.
Случайная величина , принимающая n+1 значение 0, 1, 2, ..., n, с вероятностями
где i=0, 1, 2, ..., n, q=1-р, 0<p<1, называется биноминально распределенной случайной величиной, а n и р - параметрами распределения. На рис.4 случайная биномиальная величина представлена в графической форме.
Рис.4. Распределение вероятностей биномиально
распределенной случайной величины для n=10 и p=0.2.
Заметим также, что случайная величина, распределенная по закону Бернулли, является частным случаем биномиальной случайной величины для n=1.
Случайная величина, принимающая счетное множество значений 0, 1, 2, ..., с вероятностями
где i=0, 1, …, λ>0 называется случайной величиной, распределенной по закону Пуассона. Величина λ называется параметром распределения Пуассона.
На рис. 5 случайная величина, распределенная по закону Пуассона, представлена в графической форме. Случайная величина, распределенная по закону Пуассона, служит моделью эксперимента, связанного с определением численности бактерий в единице объема, или численности животных на единицу площади, и других подобных экспериментов.
Рис. 5. Распределение вероятностей Пуассоновской случайной величины с λ=5.
Распределение Пуассона иногда называют "распределением вероятностей редких событий" поскольку оно хорошо описывает ситуацию случайно и независимо друг от друга появляющихся событий в течение заданного периода времени (регистрации радиоактивных частиц в счетчике Гейгера, телефонные звонки, появление посетителей в малопосещаемом магазине и т.п.). Существенна именно независимость событий, а их "редкость" требуется лишь для того, чтобы можно было пренебречь вероятностью одновременного появления двух событий. Если параметр относится к единице времени, то периоду времени длительностью t будет соответствовать пуассоновское распределение с параметром . Соответственно, вероятность того, что в течение периода t не произойдет ни одного события равна
Если, например, появление события влечет гибель организма, то можноинтерпретировать как вероятность того, что организм доживет до возраста t. Параметр λ в этом случае называют интенсивностью смертности, или просто смертностью. Из приведенной формулы видно, что чем больше λ , тем меньше вероятность дожить до заданного возраста t и, конечно, чем больше этот заданный возраст, тем меньше вероятность до него дожить (типичный пример - время жизни стакана в столовой).
Непрерывные случайные величины.
Определение 1. Случайная величина называется непрерывной, если её функция распределения F(x) непрерывна.
т.е функция распределения есть некоторый интеграл.
Определение2. Функция f(x) называется плотностью распределения непрерывной случайной величины.
f(x) обладает свойствами:
f(x)≥0;
Определение3.Если функция распределения имеет производную, то производная называется плотностью распределения.
Определение3.Случайная величина называется непрерывной, если для неё определена функция f(x) , обладающая свойствами 1-3 и связанная с функцией распределения формулой