Реферат: Варіаційні принципи механіки

Класична механіка, є логічним наслідком принципу (а). Німецький учений Г. Гельмгольц (1821—1894) заклав основи механіки, що випливають із принципу (b).

Усі варіаційні принципи механіки дають відповідь на питання: чим відрізняється дійсний рух системи від інших рухів, що допускаються зв'язками, накладеними на систему?

Кінематично можливий рух системи, що допускається накладеними на неї зв'язками, називається рухом порівняння.

Варіаційний принцип указує характеристику дійсного руху системи, віднесену або до даного моменту часу, або до кінцевого інтервалу часу. У першому випадку він називається диференціальним, у другому — інтегральним варіаційним принципом.

Варіаційні принципи механіки визначають найбільш загальні закономірності механічних рухів і тому знаходять широке застосування в сучасній механіці і фізиці.

Принципи, що викладаються в цій роботі є логічними наслідками принципу (а). Тут вони наведені як універсальні методи розв’язування визначених задач динаміки і статики, хоча кожний з них можна розглядати як аксіоматичне твердження, з якого логічно випливає зміст механіки при тих обмеженнях, при яких справедливий той чи інший принцип.

1.1. Дійсний і уявні рухи для вільної матеріальної точки.

Нехай вільна матеріальна точка з масою т рухається під дією сили, що має силову функцію U (х, у, z, t ). Проекції сили на осі координат дорівнюють:

Координати точки змінюються за певними законами:

x=x(f), y=y(t), z==z(t). (1)

Нехай рухома точка в момент t 0 пройшла через положення А в просторі, а в інший момент t 1 >t 0 —через положення В (рис. 1). Умовимось називати момент t 0 і положення А почат­ковими, а момент t 1 і положення В—кінцевими. Рівняння (1) изначають рух точки т, який відбувається в дійсності, тобто за законами природи. Цей рух точки називатимемо дійсним її рухом.


Рис. 1

Разом з дійсним рухом вільної матеріальної точки розглядатимемо нескінченну множину уявних її рухів, які повинні задо­вольняти такі умови:

1) кожний уявний рух по­чинається одночасно з дійсним рухом у момент t 0 і закінчується також одночасно з дійсним рухом у момент t 1 ;

2) кожний уявний рух починається з положення А, що є початковим для дійсного руху, і закінчується в положенні В, яке є кінцевим для дійсного руху.

Положення і швидкість точки в будь-якому з уявних рухів нехай відрізняються, відповідно, від положення і швидко­сті точки в її дійсному русі нескінченно мало в кожний момент часу.

Визначені переліченими вище ознаками уявні рухи є лише кінематично можливими, тоді як дійсний рух точки від­бувається насправді під дією сил заданого силового поля.

Отже, поряд з дійсним рухом вільної матеріальної точки, який відбувається між положеннями А і В за проміжок часу ( t 0 , t 1 ), розглядатимемо нескінченно близькі до дійсного можли­ві її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух, і за той самий проміжок часу ( t 0 , t 1 ) .

Порівнювані з дійсним рухом уявні рухи вільної точки можна задати аналітичне так. Виберемо три довільні однозначні неперервні і диференційовані функції часу ξ1 ( t), ξ2 ( t), ξ3 ( t), нескінченно малий параметр ε і вважатимемо, що уявлюваний рух точки визначається координатами

, (2)

де час t змінюється від моменту t 0 до моменту t 1 . Швидкість точки в уявлюваному русі визначається трьома похідними по часу від координат

(3)

Щоб уявний рух відбувався протягом того самого проміжку часу і між тими самими положеннями А та В, що й дійсний рух матеріальної точки, функції ξ1 ( t), ξ2 ( t), ξ3 ( t) треба піді­брати так, щоб вони перетворювались в нуль у початковий і кінцевий моменти часу, тобто при t = t 0 і t = t 1 :

ξ1 ( t 0 )= ξ2 ( t 0 )= ξ3 ( t 0 )=0, ξ1 ( t 1 )= ξ2 ( t 1 )= ξ3 ( t 1 )=0 (4)

При аналітичному визначенні уявних рухів ми здійснили малу зміну виду функцій x( f), y( t), z( t) , які описують дійсний рух. Ця зміна, яка полягає в переході від функцій x( t), y( t), z( t) до нових функцій

що нескінченно мало відрізняються від старих функцій, назива­ється варіюванням функцій x( t), y( t), z( t) . Прирости функцій, що знаходяться в резуль­таті варіювання, позначаються символом δ і називаються варіаціями функцій:

(5)

Користуючись поняттям варіації, можна стверджувати: якщо дій­сний рух точки відбувається за законом x= x( t), y= y( t), z= z( t) , то порівнювані з ним уявні кінематично можливі рухи відбуваються за законом

Оскільки вибір варіацій δх, δ y, δz довільний, то існує нескінчен­на множина уявних кінематично можливих рухів точки між заданими її положеннями.

1.2. Дійсний і уявні рухи для невільної матеріальної точки.

У випадку невільної матеріальної точки сформульовані вище в п.1.1. умови, які визначають клас кінематично можливих уяв­них рухів, слід доповнити ще однією: уявний рух точки по­винен бути узгоджений з зв'язками, не повинен порушувати їх[5] . Тому всі попередні результати справедливі і для руху невільної матеріальної точки, якщо тільки в рівняннях ру­ху точки використано незалежні узагальнені координати, які позначимо q1 , q2 (при одній ступені вільності матимемо лише одну координату q ). У цьому випадку, якщо дійсний рух точки визначається незалежними координатами q1 ( t) , q2 ( t) , то, ана­логічно до попереднього, уявний кінематично можливий її рух буде характеризуватись функціями

Варіації координат тут дорівнюють

У випадку однієї ступені вільності уявний рух визна­чається однією координатою. Варіація коор­динати дорівнює

1.3. Дійсний і уявні рухи для механічної системи.

Випа­док системи не відрізняється принципово від з'ясованого вище випадку однієї матеріальної точки. Нехай дійсний рух невіль­ної голономної механічної системи з п ступенями вільності ви­значається п незалежними координатами qk ( t) , ( k=1, 2, ..., п) . Уявний кінематично можливий її рух визначатиметься варійованими координатами

, (6)

де ε — нескінченно малий параметр, a ξk ( t ) довільні функції. Ці функції слід вибирати так, щоб вони перетворювались в нуль на кінцях часового інтервалу (t 0, t 1 ), протягом якого розгляда­ється рух системи. Варіації координат системи тут дорівнюють .

Отже, поряд з дійсним рухом механічної системи, який від­бувається між положеннями А і В за проміжок часу (t 0, t 1 ), розглядаються нескінченно близькі до дійсного кінематично можливі (уявні) її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух і за той самий проміжок часу (t 0, t 1 ) та узгоджені з зв'язками системи.

Уявні рухи, що задовольняють ці вимоги, називатимемо можливими в розумінні Остроградського.

К-во Просмотров: 500
Бесплатно скачать Реферат: Варіаційні принципи механіки