Реферат: Варіаційні принципи механіки

Справді, з формули (15) випливає, що при виконанні умов (21) ряд у правій частині (15) починається з другого до­данку і знак Δ S тоді такий самий, як і знак δ2 S , тобто Δ S>0 для будь-яких уявних в розумінні Остроградського рухів.

Отже, дві умови (21) достатні для існування мінімуму дії S, тоді як умова стаціонарності Δ S = 0 є лише необхідною умовою мінімуму дії S.

Можна довести, що друга варіація дії за Остроградським є додатньою в тому випадку, коли величина проміжку часу руху не перевищує певної границі, окремої для кожного розглядува­ного руху.

Нагадаємо, що існування мінімуму дії означає: якщо порів­няти числові значення інтегралів дії S і – інтегралу дії для дійсного руху із значенням інтегралу дії для уявного кінематично можливого руху, то виявиться, що завжди S< S̃.

Нерівність S < S ̃ виконується незалежно від вибору уявного руху. Потрібно тільки, щоб кінцеві положення А та В та час уявних рухів ( t 0 , t 1 ) не відрізнялись від них для дій­сного руху і щоб уявний рух був узгоджений з зв'язками.

Зміст принципу стаціонарної дії можна тлумачити ще й так:

дія S уявного руху (з числа допустимих) відрізняється від дії S для дійсного руху на нескінченно малу величину другого порядку, тоді як дія S̃ одного уявного руху відрізняється від дії для другого уявного руху на нескінченно малу пер­шого порядку.

На закінчення зробимо кілька загальних зауважень щодо переваг принципу Остроградського-Гамільтона порівняно з рівняннями руху системи, записаними в інших формах.

По-перше, рівняння (17) можна застосувати при якому завгодно способі вибору узагальнених координат системи. Вла­стивість дії S бути мінімальною для дійсного руху не залежить від того, в яких координатах ведуть обчислення інтеграла

По-друге, принцип Остроградського-Гамільтона виявляється справедливим і для систем з нескінченною множиною ступенів вільності.

Варіаційний принцип поширюється і на немеханічні фізичні процеси: теплові, електромагнітні і т. д.[8]

В основу теорії електромагнітного поля можна покласти варі­аційний принцип, який є узагальненням принципу Остроградського-Гамільтона, і потім можна вивести з нього як наслідок основні рівняння електродинаміки – так звані рівняння Максвелла. Це виведення рівнянь Максвелла цілком аналогічне до способу виведення рівнянь Лагранжа з принципу Остроградського-Гамільтона в механіці.

2.3. Принцип стаціонарної дії Ейлера-Лагранжа

2.3.1. Вихідні положення принципу.

Цей варіаційний принцип не має такої загальності, як принцип Остроградського-Гамільтона. Прин­цип Ейлера-Лагранжа відповідає рухові механічної системи з стаціонарними зв'язками в потенціальному силовому полі. За цих умов (система консервативна) існує інтеграл енергії

T+V=h . (22)

Нехай у момент часу t 0 система пройшла через деяке поло­ження А в просторі, а в інший момент t 1 через положення В. Домовимось називати момент t 0 і положення А початковими, а момент t 1 і положення В — кінцевими.

Дійсний рух механічної системи порівнюватимемо з уявними її рухами, які повинні задовольняти такі три умови:

1) зв'язки системи не порушуються;

2) повна механічна енергія системи в будь-якому уявному русі незмінна протягом усього часу руху і дорівнює її значенню h у дійсному русі;

3) початкове й кінцеве положення механічної системи повинні бути одні й ті самі для всіх уявних рухів і саме такі, які є для дійсного руху.

Крім того, вважатимемо, що уявні рухи починаються одночасно і саме в той момент t0 , в який починається дійсний рух з положення А. Кінцевий момент часу, в який система опи­ниться в положенні В, у дійсному русі дорівнює t1 , а в уявних залежить від характеру руху і може відрізнятися від t1 на малу величину δt (додатню або від'ємну).

Дійсний рух системи з уявними порівнюють так, що розглядають лише ті уявні рухи, які нескінченно близькі (за координатами й швидкостями) до дійсного руху.

Уявні рухи механічної системи, що задовольняють всі ці вимоги, називатимемо можливими в розумінні Ейлера — Лагранжа.

Переконаємось на прикладі в тому, що моменти приходу механічної системи в кінцеве положення В справді залежать від вибору уявного руху.

Розглянемо рух однієї матеріальної точки в стаціонарному силовому полі з потенціальною функцією V(х,у, z ) . Оскільки уявний рух відбувається з дотриманням закону збереження енергії, то для уявного руху маємо:

звідки , (23)

де Ṽ — значення потенціальної енергії точки в уявному русі:

Ṽ=V(х̃, у̃, z ̃)

Формула (23) показує, що швидкість руху точки, а значить, і час переміщення її з початкового положення А в кінцеве положення В в уявному русі залежать від форми траєкторії.

2.3.2. Доведення принципу.

Нехай голономна система з стаціо­нарними зв'язками рухається в потенціальному силовому полі і V — потенціальна енергія. За вихідне візьмемо загальне рівняння динаміки у вигляді:

(індекс k опустимо):

(24)

де елементарна робота активних сил на уявному переміщенні; δх, δу, δ z – варіації координат точок системи. За правилом диференціювання маємо:

(25)

У розглядуваному випадку не тільки координати х,у,г , a й час t варіюються. Це видно з того, що час приходу системи в кінцеве положення в уявному русі, як з'ясовано вище, залежить від вибору траєкторії. Тому параметр t тут не можна розглядати як незалежну змінну, що не варіюється. Це означає, що рівність яка вище була доведена для випад­ку, коли t не варіюється, тут не справджується. Згадану рів­ність слід замінити новою.

К-во Просмотров: 495
Бесплатно скачать Реферат: Варіаційні принципи механіки