Реферат: Волновые процессы и элементы векторного анализа
1. Введение. Волновые процессы.
При взаимодействии среды с физическими полями и упругими материальными объектами, в средах возникают возмущения. Одним из таких возмущений являются волны.
Волны представляют собой изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию, без переноса вещества. Математически процесс распространения волн описывается с помощью волнового уравнения. В наиболее общем виде волновое уравнение записывается:
(1.)
Где t-время; x, y, z –пространственные декартовые координаты, W=W(x,y,z,t)-функция возмущения среды в точке с координатами x,y,z в момент времени t, с- параметр, характеризующий скорость, которая в предельном случае достигает скорости света, - оператор Д’Аламбера (даламбериан); Δ- оператор Лапласа (лапласиан).
Частными видами волнового уравнения является двухмерное и одномерное волновые уравнения. Волновое уравнение допускает разделение переменных по координатам и времени: W=W(x, y, z,) φ(t). В представленном виде волновое уравнение называют неоднородным, т.к. в его правой части стоит заданная функция координат и времени, т.е. W=f(x,y,z,t).
Для рассмотрения задач квантовой механики, изучающей законы движения частиц в области микромира (в масштабах- 10-6 -10-13 см. со скоростями как меньше v<<c, так и сравнимых со скоростью света v≈c), в 1926 году Эрвином Шредингером было предложено новое уравнение. Он в волновое уравнение ввел постулат де Бройля λ=h/p. Это известное сегодня уравнение Шредингера:
(2.)
Где h- постоянная планка; m- масса частицы; ψ- волновая функция частицы, U- потенциальная энергия частицы, - оператор Лапласа.
Строгое решение уравнения (2) сегодня осуществлено только для атома водорода, что позволяет считать вычисленные при решении уравнения Шредингера для атома водорода волновые функции точными. Но уже для двух электронного атома, имеющего электронную конфигурацию 1S2 точное решение уравнения Шредингера принципиально невозможно. Запишем выражение для потенциальной энергии атома гелия:
(3.)
Здесь Z=2, заряд ядра; первые два числа учитывают притяжение первого и второго электрона ядром, третий член выражает часть потенциальной энергии, обусловленной взаимным отталкиванием электронов. Для многоэлектронных атомов с числом электронов больше двух точное решение уравнения Шредингера невозможно, поскольку в гамильтониан H полной энергии атома с n электронами и соответствующим зарядом ядра:
(4.)
входят не только оператор кинетической энергии и оператор потенциальной энергии для электронов, притягиваемых ядром, но и оператор энергии отталкивания электронов друг от друга. Так как последний оператор имеет противоположный знак, исключается возможность разделения переменных и становится принципиально невозможным точное решение уравнения Шредингера для многоэлектронных атомов.
Все дальнейшие попытки рассмотрения квантово механических многоэлектронных систем основано на использовании различных приближений методов и моделей. Наибольшее распространение получила модель водородоподобных атомов. На основе этой модели в одноэлектронном приближении для многоэлектронных атомов рассматривается взаимодействие одного внешнего электрона с ядром, заряд которого экранирован всеми остальными внутренними электронами. Подчеркнем, что в данной модели предполагается, что остальные электроны равномерно экранируют заряд ядра во всех направлениях. Константе экранирования σ учитывает это экранирование:
Zэф =Z-σ
В этой модели соответствующие орбитали отличаются от орбиталей атома водорода радиальными составляющими R(r), но имеют идентичные угловые составляющие Ve , m и следовательно формы s-,p-,d-,f- орбиталей будет такой же как и у атома водорода. Этот расчет многоэлектронных атомов, основанный на работах Слетера, называется водородоподобным. Дальнейшее более точное приближение основано на работах Хартри и Фокса. В этом приближении учитывается усредненное отталкивание одного данного электрона от каждого из остальных электронов. Волновые функции атома в методе Хартри-Фокс представляют собой произведение водородоподобных волновых функций.
2. Волны и скорости волн
2.1Основные положения. Понятие волны.
Волной называют распространение возмущения в непрерывной среде. Волна
может распространяться также в пространственно периодической структуре, т.е. в твердом теле.
Волну представляют как возмущение в пространстве и времени, т.е. заданием возмущения как функции координат r =c временем t.
Скалярное возмущение w=w(r,t). Векторное возмущение W=W(r,t).
Волны бывают различными и могут распространяться в различных случаях:
1) В случае одновременной волны вдоль струны средой является упругая струна. Возмущению отвечает отклонение струны.
2) Поверхностная волна может возникнуть в среде, которой является двумерная поверхность жидкости или кристалла. Возмущение представляет собой отклонение частиц жидкости или атомов твердого тела на поверхности от их положения равновесия.
3) Известны звуковые или акустические волны. Они могут распространяться в веществах, находящихся в различных агрегатных состояниях: газообразном, жидком, твердом.
Возмущение в этом случае представляет собой локальные изменения давления. Оно определяется средним локальным смещением атомов или молекул. В абсолютно твердом теле звуковые волны невозможны.
4) Электромагнитные волны могут распространяться в следующих случаях: вакууме, газе, жидкости и твердом теле. В этом случае возмущение представляет собой изменяющееся во времени электрическое и магнитное поля.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--