Реферат: Вычисление интеграла по поверхности
Пример 4.
Пример 5.
Теорема Остроградского-Гаусса.
Дивергенция.
-поток вектора через поверхность в направлении за единицу времени есть разность между количеством жидкости вытекающей из области и количеством жидкости втекающей в область .
1. . Следовательно из области жидкости вытекает столько же сколько втекает.
2. жидкости или газа вытекает больше, внутри существует источник .
3. жидкости или газа втекает больше чем вытекает , внутри существует сток.
Чтобы оценить мощность источников и стоков внутри нам необходима теорема Остроградского-Гаусса.
Если -непрерывна вместе с частными производными в области то:
Поток изнутри равен суммарной мощности источников и стоков в области
за единицу времени.
Величина потока вектора через замкнутую поверхность :
является глобальной характеристикой векторного поля в области и очень приблизительно позволяет судить о наличии источников и стоков в области .
· Поток представляет собой избыток жидкости протекающей в сторону положительной нормали , а не абсолютное количество жидкости прошедшей через независимо от направления течения. В связи с этим удобно ввести локальную характеристику распределения стоков и источников. Такой характеристикой является дивергенция (плотность потока в точке):
Дивергенция:
Определение:- стягивается в точку.
Определение: Дивергенцией векторного поля в точке называется предел отношения потока векторного поля через поверхность к объему , ограниченному этой поверхностью, при условии что поверхность стягивается в точке .
Дивергенция характеризует отнесенную к единице объема мощность потока векторного поля исходящего из точки , т.е. мощность источника и стока находящегося в точке .
- средняя объемная мощность потока .
-существует источник в точке .