Реферат: Задачи по теории принятия решений
Факультет: Бизнес, Маркетинг, Коммерция
Дисциплина: Теория принятия решений
Тема контрольной работы: [Задачи по четвёртому варианту]
Ф.И.О. студента: Спрыжков Игорь Максимович
Курс: 4. Семестр: 7. Номер зачетной книжки: 1818.
Дата сдачи: _____________________
Ф.И.О. преподавателя: Асташкин С.В.
Оценка: _________________________ Подпись: _________________________
Дата проверки: __________________
Задача 1
Условие
Решить симплекс-методом задачу, предварительно приведя её к каноническому виду:
x1 – x2 – x3 + 7x4 → max
-x1 + 2x2 – x3 + x4 ≤ 2
2x1 + x2 + x3 – 2x4 ≤ 12
2x1 + 3x2 + 4x3 + 2x4 ≤ 6
xj ≥ 0, j = 1, 2, 3, 4
Решение
Общий вид задачи линейного программирования в канонической форме:
∑aij = bi , i = 1, 2, …, n
xj ≥ 0, j = 1, 2, …, n, n+1, n + m
∑pj xj → max
Экономико-математическая модель рассматриваемой задачи в канонической форме будет иметь вид:
-1x1 + 2x2 – 1x3 + 1x4 + 1x5 + 0x6 + 0x7 = 2
2x1 + 1x2 + 1x3 - 2x4 + 0x5 + 1x6 + 0x7 = 12
2x1 + 3x2 + 4x3 + 2x4 + 0x5 + 0x6 + 1x7 = 6
xj ≥ 0, j = 1, 2, …, 7
x1 – x2 – x3 + 7x4 + 0x5 + 0x6 + 0x7 → max
Т.е. в ней линейная форма максимизируется, все ограничения являются равенствами, все переменные удовлетворяют условию неотрицательности.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--