Реферат: Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях
Определим деформации ε1 и ε2 в направлениях главных напряжений при плоском напряженном состоянии (рис. 1). Для этого используем закон Гука для одноосного напряженного состояния, а также зависимость между продольной и поперечной деформациями и принцип независимости действия сил (принцип сложения деформаций).
От действия одного напряжения σ1 относительное удлинение по вертикали равно
и одновременно в горизонтальном направлении относительное сужение равно
От действия одного только σ2 имели бы в горизонтальном направлении удлинение и в вертикальном на-
правлении сужение Суммируя деформации, получаем:
(1)
Эти формулы выражают обобщенный закон Гука для плоского напряженного состояния. Если известны деформации ε1 и ε 2 , то, решая уравнения [1] относительно напряжений σ1 и σ2 , получим следующие формулы:
(2)
Аналогично для объемного (пространственного) напряженного состояния, когда все три главных напряжения σ1 , σ2 и σ3 отличны от нуля, получим:
(3)
Уравнения (3) представляют собой обобщенный закон Гука для объемного напряженного состояния. Деформации ε1 , ε2 и ε3 в направлении главных напряжений называются главными деформациями.
Зная ε1 , ε2 и ε3 , можно вычислить изменение объема при деформации. Возьмем кубик 1x1x1 см. Объем его до деформации равен V0 = 1 см3 . Объем после деформации равен
(произведениями , как величинами, малыми по сравнению с самими , .пренебрегаем).
Относительное изменение объема v
(4)
Подставив сюда значения ε1 , ε2 и ε3 из уравнений (2.40), получим
(5)
Из формулы (5) следует, что коэффициент Пуассона μ не может быть больше 0,5. Действительно, при трехосном растяжении, очевидно, объем элемента уменьшиться не может, т. е. εv положительно, а это возможно лишь при условии 1—2 μ≥0, так как главные напряжения в этом случае положительны (σ1 ≥σ2 ≥σ3 >0).
Формулы [2] — [5] выражают зависимость не только между главными деформациями и напряжениями, но и между любыми (неглавными) значениями этих величин, т. е. они остаются справедливыми и тогда, когда на площадках действуют также касательные напряжения.
Это следует из того, что линейные деформации (в направлениях, перпендикулярных т) не зависят от касательных напряжений.
РАБОТА ВНЕШНИХ И ВНУТРЕННИХ СИЛ ПРИ РАСТЯЖЕНИИ (СЖАТИИ). ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ДЕФОРМАЦИИ
При растяжении (сжатии) внешние силы совершают работу вследствие перемещения точек их приложения (рис. 2, а).
Вычислим работу статически приложенной внешней силы, т. е. такой силы, величина которой растет в процессе деформации от нуля до своего конечного значения с весьма небольшой скоростью.
Элементарная работа dAвнешней силы Р наперемещении dδ равна
(6)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--